• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

砂岩型铀矿微区原位U-Pb同位素定年技术方法研究

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129
引用本文: 肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129
XIAO Zhi-bin, GENG Jian-zhen, TU Jia-run, ZHANG Ran, YE Li-juan, BI Jun-hui, ZHOU Hong-ying. In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129
Citation: XIAO Zhi-bin, GENG Jian-zhen, TU Jia-run, ZHANG Ran, YE Li-juan, BI Jun-hui, ZHOU Hong-ying. In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. DOI: 10.15898/j.cnki.11-2131/td.201908120129

砂岩型铀矿微区原位U-Pb同位素定年技术方法研究

基金项目: 

国家重点基础研究发展计划(973计划)项目 2015CB453000

国家重点研发计划“深部矿产资源勘查增储应用示范”重点专项项目 2018YFC0604200

中国地质调查局地质调查项目 DD20190121-13

国家重点研发计划“深部矿产资源勘查增储应用示范”重点专项项目(2018YFC0604200);国家重点基础研究发展计划(973计划)项目(2015CB453000);中国地质调查局地质调查项目(DD20190121-13)

详细信息
    作者简介:

    肖志斌, 硕士, 工程师, 地球化学专业, 主要从事同位素地质年代学研究。E-mail:zhibin_xiao@163.com

    通讯作者:

    耿建珍, 硕士, 高级工程师, 应用化学专业, 主要从事同位素地质年代学研究。E-mail:mumu1270@163.com

  • 中图分类号: O628;P619.14;O657.63

In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits

  • 摘要: 铀矿物定年一直是成矿年代学中的难点,随着微区原位U-Pb同位素定年技术的发展,可以直接针对矿石矿物(铀矿物)进行同位素定年;但是其中的砂岩型铀矿由于其存在状态复杂,在原位定年中剥蚀要求高,也缺乏合适的外部校正标准物质,所以定年准确度有待提高。本文研究了两种微区原位U-Pb同位素测年的方法,对砂岩型铀矿定年进行了尝试,试图解决铀矿测年中的无基体匹配问题并提高砂岩型铀矿定年水平。一是建立了一种激光剥蚀多接收电感耦合等离子体质谱仪联合电子探针进行微区原位U-Pb同位素测年的技术(LA-MC-ICP-MS&EMPA)。通过优化实验方法,对秦岭陈家庄花岗岩型铀矿进行了测试,获得与同位素稀释热电离质谱法(ID-TIMS)一致的年龄结果,证明了微区原位U-Pb同位素测年无基体匹配标准物质分析的可行性;并利用此法获得鄂尔多斯盆地红庆河和塔然高勒砂岩型铀矿的微区原位U-Pb同位素年龄信息。二是尝试了利用飞秒激光剥蚀多接收电感耦合等离子体质谱法(fsLA-MC-ICP-MS)对红庆河和宁夏宁东砂岩型铀矿样品进行微区原位U-Pb同位素定年,并获得了微区原位U-Pb同位素年龄,表明飞秒激光剥蚀技术在砂岩型铀矿定年中有很好的应用前景。本文提出,比较单一且年龄偏老的单矿物样品可以选择LA-MC-ICP-MS&EMPA联合法进行分析,需要高空间分辨率的样品建议使用fsLA-MC-ICP-MS法。
    要点

    (1) 建立了一种无需基体匹配标准物质的微区原位U-Pb同位素定年的技术方法。

    (2) 飞秒激光剥蚀技术在砂岩型铀矿微区原位定年中有很好的应用前景。

    (3) 报道了鄂尔多斯盆地周边多个砂岩型铀矿的微区原位U-Pb同位素年龄。

    HIGHLIGHTS

    (1) A technique has been developed for in situ U-Pb isotope dating without matrix-matching reference materials.

    (2) fsLA has a good application prospect for in situ U-Pb dating of sandstone-type uranium deposits.

    (3) in situ U-Pb ages of several sandstone-type uranium deposits from Ordos basin were reported.

  • 硫酸盐广泛分布于自然界的岩石圈与水圈之中,硫酸盐矿物氧同位素组成可以提供其形成过程和条件的信息,常常被用于研究地下水的水质演化、河水溶解性硫酸盐来源和主要控制因素、硫酸溶洞的形成过程、污染来源、古海洋的重建、微生物对硫酸盐的还原作用等[1-6]

    目前,硫酸盐的氧同位素分析一般是将硫酸盐转化为硫酸银(Ag2SO4)或硫酸钡(BaSO4)[7],在形成沉淀的过程中,过量的AgNO3容易被Ag2SO4沉淀包裹而影响硫酸根的氧同位素组成,因此,常用的方法是添加氯化钡(BaCl2)将硫酸盐转化为BaSO4,然后测定硫酸钡的氧同位素组成(δ18O)[8],主要分为离线法和在线连续流方法。离线法主要有氟化法和碳还原法[9-11],其分析流程复杂,样品结果受人为操作干扰大,此外,氟化法所使用的五氟化溴、氟气等强氧化性气体危险性高,因而应用较少。在线连续流高温分解固体有机物的概念于1993年由Gygli[12]提出,之后Werner等[13]及Koziet[14]改进了Gygli方法[12],将元素分析仪(EA)与稳定同位素质谱仪(IRMS)联接,氦气作为载气,分别于1080℃及1300℃高温下用玻璃碳将有机物分解转化为CO,测定其氧同位素组成。方玲等[15]应用高温裂解法(HT)在1325℃下对高氯酸盐进行氧同位素测试,测试精密度为±0.3‰。这些方法的发展,促使在线高温裂解法测定含氧无机盐类氧同位素的测试技术逐渐应用于BaSO4氧同位素的在线测试。

    为了获得准确的BaSO4氧同位素组成,需要更高的温度才能将BaSO4完全分解。Kornexl等[16]、Michalski等[17]以及Sharp等[18]将在线高温裂解BaSO4的反应温度分别提高到1400℃、1425℃及1450℃,高温下分解产生的氧气或含氧化合物与玻璃碳粒还原反应生成CO,通过CO测试其氧同位素组成,测试精密度分别为±0.5‰、±0.2‰及±0.2‰。但反应炉长时间维持1400℃以上的高温,这对于炉膛也是一个考验。为了降低BaSO4的在线裂解温度,Böhlke等[19]将碳粉与BaSO4样品混合装入银杯后在线进样,反应温度降低至1325℃,其δ18O的重现性为±0.2‰~±0.3‰。Morrison[20]使用镀镍碳(Ni-C)与BaSO4样品混合装入锡杯后通过EA进样,进一步将反应温度降低至1260℃。

    从前人研究成果[16-19]可以看出,在线高温裂解法测定BaSO4氧同位素组成的测试精度一般优于±0.5‰,但是不添加还原剂直接在线高温裂解BaSO4反应温度为1400~1450℃,长时间1400℃以上的高温工作极易缩短反应炉的寿命,并且背景值m/z=28、29、30离子流强度较高,过高的背景值影响测试准确度。BaSO4样品与碳粉或Ni-C混合后在线进样,可以降低反应温度,但对于碳粉或Ni-C是否有本底以及如何处理的方法未见报道。Morrison[20]报道的反应温度可以低至1260℃,但只是在一篇应用简报中对此分析方法作简单描述,其测试精密度没有给出。除了上述问题,关于在线高温裂解法测试BaSO4氧同位素组成的关键技术参数与影响因素也缺乏系统性探讨。因此,本文添加Ni-C作为还原剂,与BaSO4样品混合均匀后包裹于银杯进样,开展了本底、Ni-C、反应温度、样品质量等条件参数对EA/HT-IRMS系统测定BaSO4氧同位素组成的准确度与精密度的影响研究,以拓展该同位素测试技术的应用范围。

    硫酸钡与碳在高温下可发生以下化学反应:

    $\begin{array}{l} {\rm{BaS}}{{\rm{O}}_4} + 2{\rm{C}} = {\rm{BaS}} + 2{\rm{C}}{{\rm{O}}_2} \uparrow \\ {\rm{C}} + {\rm{C}}{{\rm{O}}_2} = 2{\rm{CO}} \end{array} $

    ${\rm{BaS}}{{\rm{O}}_4} + 4{\rm{C}} = {\rm{BaS}} + 4{\rm{CO}} \uparrow $

    也可能存在如下的副反应:

    $\begin{array}{l} {\rm{BaS}}{{\rm{O}}_4} + 2{\rm{C}} = {\rm{BaO}} + {\rm{COS}} \uparrow + {\rm{C}}{{\rm{O}}_2} \uparrow \\ {\rm{BaS}}{{\rm{O}}_4} + {\rm{C}} = {\rm{BaO}} + {\rm{S}}{{\rm{O}}_2} \uparrow + {\rm{CO}} \uparrow \\ {\rm{BaS}}{{\rm{O}}_4} + 4{\rm{CO}} = {\rm{BaS}} + 4{\rm{C}}{{\rm{O}}_2} \end{array} $

    上述化学反应中,BaSO4中的O全部转化为CO,是氧同位素组成测试的关键因素。为了实现BaSO4氧同位素组成的准确测定,设置离子源发射电流为1.5mA,Conflo Ⅳ的氦气载气压力为1.01×105Pa,EA/HT系统氦气载气流量为90mL/min,参考气Reference流量为225mL/min,色谱分离柱温度为70℃,反应管的填充方案与徐文等[21]报道的相同。测试流程为:称取一定质量BaSO4样品与Ni-C,装入银杯中用镊子压紧,样品经固体自动进样器送入反应管,BaSO4样品与Ni-C在高温下发生还原反应生成CO,CO在高纯氦气载气的吹扫下通过水阱,进入柱温70℃的不锈钢色谱柱(1m×6mm×5mm,内填5Å分子筛),与N2(图 1)有效分离后的CO进入Conflo Ⅳ气体接口装置分流,最后导入气体稳定同位素比值质谱仪(IRMS)中测试δ18OVSMOW值。

    图  1  Ni-C产生CO峰形示意图
    Figure  1.  Schematic diagram of CO peak shape of Ni-C

    本实验测试装置主要有气体同位素质谱仪(IRMS)、元素分析仪(EA/HT)、气体接口装置(Conflo Ⅳ),均为美国ThermoFisher公司产品。

    反应管主要由陶瓷管、玻璃碳管以及内部填充的银丝、石英棉、玻璃碳粒、石墨坩埚、石墨管组成,均产自美国ThermoFisher公司。

    包裹BaSO4样品所用的银杯及还原剂镀镍碳为SÄNTIS Analytical AG公司产品。实验所用国际参考物质NBS-127、IAEA-SO-5以及条件试验样品STLS均为BaSO4固体。

    载气(氦气)及参考气(CO)气体纯度为99.999%,北京氦谱北分气体工业有限公司产品。

    BaSO4氧同位素组成的在线测定方法中,本底主要有三个方面,其中氦气及仪器造成的CO本底主要影响峰形的基线,另外两个因素银杯及Ni-C可能含有氧,与BaSO4中的氧产生混染。不消除这些因素都可能对实验结果产生影响,进而引起BaSO4氧同位素组成测试偏差。

    (1) 氦气及仪器

    氦气及仪器造成的CO本底主要影响峰形的基线,必须严格控制m/z=28、29、30离子流强度在200mV以内,并确保稳定。本底过高或者不稳定,在样品测试时均会对峰形造成影响,进而影响测试的准确度。实验发现,测试一定数量的样品之后,色谱柱可能会吸附杂质气体,导致背景值升高。因此,测试前需要对色谱柱进行150℃的高温过夜烘烤,之后降温至70℃。烘烤后发现,背景m/z=28、29、30离子流强度显著下降。

    (2) 银杯

    银杯在空气中放置一段时间后可能发生氧化变成黄色,形成Ag2O。被氧化的银杯在高温下与C反应生成CO,与BaSO4产生的CO形成混染,对测试结果产生干扰。因此,需要挑选洁净的银杯进行本底实验。实验结果表明,洁净空银杯基本不产生CO离子流,不会影响BaSO4样品测试。

    (3) Ni-C

    Ni-C具有催化还原性能,可以有效改善BaSO4的反应进程,既能降低BaSO4的高温分解温度,又能促进CO的生成。但Ni-C作为还原剂,Ni-C可能会发生氧化或者吸附含氧物质,在高温下与C反应生成CO,影响测试结果。

    称取2000μg没有经过高温处理的Ni-C进行实验,如图 1中1所指的实线部分,m/z 28离子流强度大约100mV,推测为镍氧化或者吸附水产生的本底。为了除掉Ni-C中的氧,在1350℃高温氦气流下进行2h以上的灼烧,通过质谱仪可以明显地监测到m/z 28离子流强度开始升高,最高可达数千mV,之后逐渐降低至正常水平。降温后再次称取2000μg的Ni-C进行实验,2000μg的Ni-C形成的峰形如图 1中2所指虚线部分,CO形成小突起,其离子流强度小于50mV,对于离子流强度高达10000mV的样品峰来说,小于50mV对样品测试的影响可以忽略[16]

    综上所述,将氦气及仪器形成CO离子的背景值控制在200mV以内,挑选洁净银杯,对Ni-C高温处理后装入银杯进样,形成的本底小于50mV,满足以上条件,方可添加Ni-C进行BaSO4样品高温裂解实验。

    在不添加还原剂的情况下,为保证较好的测试精密度及BaSO4瞬间完全分解,需要1420℃以上的高温[15-17],但是,一个序列分析样品一般在50个以上,通常将样品加入自动进样器过夜测试,长时间在1420℃以上的高温下工作,加热炉的使用寿命会受到极大影响。为了降低反应温度,出现了将碳粉或者Ni-C与BaSO4样品混合后进样的在线分析方法。Böhlke等[19]将碳粉与BaSO4样品混合后在线进样,反应温度降低至1325℃,但是该文中绝大部分篇幅在讨论硝酸盐的氧同位素组成测试,对于BaSO4样品测试只是简单描述,仅仅给出1325℃下的测试数据,没有进行温度序列的细致分析。Morrison[20]使用Ni-C与BaSO4样品混合装入锡杯后进样,将反应温度降低至1260℃,对于测试过程并没有进行详细报道,另外,虽然温度降低了,但是锡杯容易升华并凝固于反应管内壁,造成反应管的清理难度增加。

    为了获得详细的实验数据以及最佳的BaSO4高温裂解温度,本实验使用m/z=28离子流强度/质量(mV/μg)代表BaSO4分解的完全程度。该值越高,反应越充分。温度逐渐升高,若该值稳定在一定范围,认为反应完全。不添加Ni-C,进行了1150~1450℃共10个温度点的BaSO4高温裂解试验,反应温度从1150℃升高到1325~1400℃区间,m/z=28的离子流强度与BaSO4质量比值从8.4mV/μg升高到15.8mV/μg左右,反应不完全;随着温度升高到1425~1450℃区间时,该比值继续增加到16.6 mV/μg左右后趋于稳定(图 2a),该温度范围与国外学者[16-18]研究成果基本吻合。由图 2b可以看出,当温度在1425℃以上时,两个δ18O平均值为8.57‰±0.07‰,更接近其离线定值。因此,可以确定m/z 28的离子流强度/BaSO4质量比值达到16.6mV/μg作为BaSO4反应完全的参数指标。

    图  2  反应温度与离子强度/质量和δ18O关系图
    Figure  2.  Correlation between the reaction temperature and ratio of the signal intensity to mass and δ18O

    将Ni-C与BaSO4样品STLS混合均匀后进样,由图 2c可以看出,反应温度从1150℃升高时,m/z 28的离子流强度/BaSO4质量比值从11.5mV/μg逐渐增大,当达到1350℃以上时,与上述1425℃以上的离子流强度/BaSO4质量比值一致,稳定在16.6mV/μg左右,表明BaSO4反应完全。该趋势与BaSO4δ18O值的变化(图 2d)极为吻合,当温度处于1350℃以上时,δ18O值为8.56‰±0.19‰,趋于稳定,且与BrF5离线制样测得的δ18O值8.49‰±0.22‰在误差范围内。

    在不添加Ni-C以及添加Ni-C两种情况下,在1150~1450℃共10个温度点分别运用在线高温裂解法对BaSO4氧同位素组成进行了测试研究,认为添加Ni-C作为还原剂,可以将BaSO4裂解温度降低至1350℃,δ18O测试精密度为±0.20‰,优于在1420℃以上测试获得的精密度(±0.20‰~±0.50‰)[16-18],既保证了精密度满足要求,也达到降低反应温度的目的。

    Ni-C与BaSO4质量比影响BaSO4瞬间反应程度,按照化学方程式计算C与BaSO4全部生成CO的摩尔比值为4,换算成质量比值大约为0.25,Ni-C中的C含量大约70%,使用Ni-C与BaSO4完全反应的质量比值为0.36。实际测试过程中,为了保证反应完全,需要加入过量的还原剂Ni-C。万德芳等[9]采用离线制样使用石墨粉与硫酸钡的质量比为2;Böhlke等[19]通过在线高温裂解法,将500μg石墨粉与750μg硫酸钡混合后装入银杯进样,质量比例约为0.67;Fourel等[22]使用Ni-C与Ag2SO4质量比值大约1。以上离线及在线制样获得的δ18O测量精密度为±0.20‰。而在实际称样时,由于样品量是μg级,准确称量比较困难,因此考虑确定一个大概的Ni-C/BaSO4质量比值范围,对于样品分析人员更加具有实用性。

    针对上述问题,配制不同质量比的Ni-C与BaSO4混合后进样,在1350℃下进样6次,δ18O测试结果列于表 1。当Ni-C/BaSO4质量比值为0.35时,该比值略小于Ni-C与BaSO4完全反应的质量比值0.36,离子流强度/BaSO4质量比值为16.13,峰形出现拖尾现象,进一步证明了瞬间反应不完全;当Ni-C/BaSO4质量比值为0.73~3.34时,反应较为完全,质量比值为3.34时的δ18O值出现异常,推测为过量的Ni-C干扰了BaSO4分解反应,其影响机制尚不清楚。除掉第1次及第6次的测定值,Ni-C/BaSO4质量比值范围为0.73~2.15时,δ18O四次测试平均值为8.55‰±0.13‰。相对于其他研究成果[19, 22],本实验中C与BaSO4的质量比值范围更加宽泛,更加有利于样品的称量;另外,δ18O精密度优于±0.20‰,与他人研究[19-20]一致。

    表  1  不同Ni-C/BaSO4质量比值测试数据
    Table  1.  Measurement results for different ratio of Ni-C/BaSO4
    参数 第1次 第2次 第3次 第4次 第5次 第6次
    BaSO4质量(μg) 791 778 793 725 738 708
    Ni-C质量(μg) 279 570 931 1182 1588 2362
    Ni-C/BaSO4质量比值 0.35 0.73 1.17 1.63 2.15 3.34
    离子流强度(mV) 12759 12943 13108 12132 12318 11845
    离子流强度/BaSO4
    质量比值(mV/μg)
    16.13 16.64 16.53 16.73 16.69 16.73
    δ18O(‰) 8.48 8.52 8.59 8.69 8.39 7.97
    下载: 导出CSV 
    | 显示表格

    样品质量对于同位素测试结果的影响可以用线性来考量,仪器的线性主要由参考气来测试。查向平等[23]研究发现,实际分析测试过程中,样品44CO2离子强度在2000~6000mV能够获得相对稳定和高精度的同位素比值,此时δ18O值与离子流强度的线性小于0.1‰/V;韩娟等[24]对不同质量的硫化银样品进行测试后认为,需要严格控制样品量在420±50μg,才能满足δ34S的测试精密度优于±0.2‰的要求。借鉴上述研究成果,本实验称取不同质量的BaSO4样品来测试其线性,并且控制BaSO4在一定的质量范围内,满足线性指标小于0.1‰/V、δ18O测试精密度优于±0.2‰的要求,这对于实际操作更加具有指导意义。

    称取305~1052μg范围内共9个不同质量的BaSO4样品STLS,同时称取大约等量的Ni-C,混合后分别进行试验,测试结果列于表 2。可见BaSO4样品质量与m/z 28离子流强度(V)的线性关系为y=59.72x+6.716,即每60μg的BaSO4样品产生约1V的m/z 28离子流强度;δ18O值与m/z 28离子流强度(V)的线性关系为y=-0.079x+9.605,表明m/z 28离子流强度每变化1V,对δ18O值的影响为0.08‰;BaSO4样品质量与δ18O的线性关系为y=-0.001x+9.614,表示1μg的BaSO4样品质量变化引起δ18O的测试偏差为0.001‰。由以上关系式可以计算出BaSO4δ18O的精密度达到±0.2‰,需要控制BaSO4样品质量差在200μg以内。选取636~822μg共4个样品计算其δ18OVSMOW值为8.65‰±0.06‰,测试结果稳定且与离线定值在误差范围内。该质量范围与Böhlke等[19]的样品用量吻合。因此,考虑将Ni-C及BaSO4样品量控制在700±100μg,测试BaSO4δ18O值精密度可以达到±0.2‰左右。

    表  2  BaSO4不同样品量测试数据
    Table  2.  Measurement results for different amounts of BaSO4 sample
    参数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次
    BaSO4质量(μg) 305 392 519 636 703 802 822 939 1052
    Ni-C质量(μg) 292 376 505 739 766 1279 675 946 1105
    m/z 28离子流强度(V) 4.88 6.40 8.73 10.63 11.72 13.30 13.59 15.61 17.44
    δ18OVSMOW(‰) 8.99 9.33 8.92 8.72 8.67 8.58 8.63 8.33 8.14
    下载: 导出CSV 
    | 显示表格

    在以上实验的基础上,为了验证EA/HT-IRMS法测定BaSO4δ18O值的有效性,选用BaSO4标准物质进行验证。查向平等[25]认为标准物质应该与分析的样品具有相同或类似的化学组分,最好的方案是基于线性回归的两点或多点标准化方法。由于储存及同位素稳定性方面等原因,目前BaSO4给出δ18O参考值的只有NBS-127。国外部分学者[16, 19, 26-27]对于BaSO4标准物质IAEA-SO-5(δ34S有参考值,δ18O没有参考值)的δ18O值进行了测试并给出了测定值。本实验考虑采用单标准NBS-127定值来验证IAEA-SO-5的准确度与精密度[28]

    设置反应炉温度1350℃,分别控制Ni-C及BaSO4样品量为700±100μg,在线高温裂解法测试NBS-127共5次的δ18OVSMOW校正结果为9.30‰±0.26‰,使用该值对IAEA-SO-5进行单标准定值计算,其δ18OVSMOW值为12.04‰±0.12‰,准确度及精密度均优于±0.26‰,等同于表 3所示国外学者的结果。

    表  3  国外学者及本次实验IAEA-SO-5的δ18O值
    Table  3.  Measured δ18O values of IAEA-SO-5 obtained by foreigners and the author
    研究出处 δ18O测试值
    (‰)
    Kornexl等[16] 12.0±0.2
    Böhlke等[19] 11.99±0.18
    Geilmann等[26] 12.00
    Halas等[27] 12.20±0.07
    本实验 12.04±0.12
    下载: 导出CSV 
    | 显示表格

    相对于传统离线法,在线高温裂解法分析BaSO4的氧同位素组成具有效率高、样品用量少等优点,该方法的条件参数和标准物质的选择都可能影响δ18O测试的准确度与精密度。为延长反应炉的使用寿命,降低实验成本,本研究添加Ni-C作为还原剂,开展了Ni-C及相关条件参数对于EA/HT-IRMS法测试BaSO4δ18O准确度与精密度影响的系统性研究,主要获得以下结论:①添加Ni-C能降低反应温度,但Ni-C可能引入本底,对Ni-C进行高温灼烧可消除其本底影响。②测试BaSO4δ18O精密度受反应温度的影响显著,在保证测试精密度以及延长反应炉使用寿命的前提下,确定了1350℃为最佳反应温度。③Ni-C与BaSO4的添加比例既要考虑反应完全,也要考虑不能过大,确定两者的质量比为0.73~2.15,大大提高了称量的可操作性。④BaSO4样品质量对其δ18O值的测试影响可以通过δ18O值与BaSO4样品量的线性指标来考量,本实验的线性指标为0.001‰/μg,为了保证样品测试的精密度优于±0.20‰,推荐的样品量为700±100μg。⑤样品测试结果的准确度是检验分析测试方法的重要指标。采用单一标准NBS-127校正法标定IAEA-SO-5的δ18O值,准确度与国外学者一致;采用本文EA/HT-IRMS法测试BaSO4δ18O值,精密度为±0.12‰~±0.26‰,优于国外学者的在线法。

    此外,对于其他天然的硫酸盐矿物,如石膏,直接使用EA/HT-IRMS法测定则需要进行部分条件参数的调整,这需要进行更多的研究拓展该方法的应用范围,为硫酸盐矿物δ18O值的准确测定提供科学依据。

  • 图  1   HQH-2样品测试位置(BSE图像)

    Ur—铀矿物,Qz—石英,Py—黄铁矿,Kfs—长石。

    Figure  1.   Test positons of sample HQH-2 (backscattering images)

    图  2   CJZH样品U-Pb年龄谐和图(a—LA-MC-ICP-MS & EMPA法,b—ID-TIMS法)

    Figure  2.   U-Pb age diagrams of sample CJZH (a—LA-MC-ICP-MS & EMPA; b—ID-TIMS)

    图  3   HQH-1样品LA-MC-ICP-MS & EMPA测试位置(a)和U-Pb年龄谐和图(b)

    Figure  3.   Test positions (a) and U-Pb age diagrams (b) of sample HQH-1 measured by LA-MC-ICP-MS & EMPA

    图  4   TRGL样品LA-MC-ICP-MS & EMPA测试U-Pb年龄谐和图

    Figure  4.   U-Pb age diagrams of sample TRGL measured by LA-MC-ICP-MS & EMPA

    图  5   fsLA-MC-ICP-MS测定沥青铀矿GBW04420结果

    Figure  5.   Analytical results for GBW04420 measured by fsLA-MC-ICP-MS

    图  6   fsLA-MC-ICP-MS测试样品HQH-2的U-Pb年龄谐和图

    a—铀矿物A测试U-Pb年龄谐和图;b—铀矿物B1、B2测试U-Pb年龄谐和图;c—铀矿物C测试U-Pb年龄谐和图;d—铀矿物A、B1、B2、C汇总U-Pb年龄谐和图。

    Figure  6.   U-Pb age diagrams of sample HQH-2 measured by fsLA-MC-ICP-MS

    图  7   样品ND的fsLA-MC-ICP-MS测试位置(a)和U-Pb年龄谐和图(b)

    Figure  7.   Test positions (a) and U-Pb age diagrams (b) of sample ND measured by fsLA-MC-ICP-MS

    表  1   线扫描模式下不同剥蚀斑束206Pb/238U比值变化

    Table  1   Variation of 206Pb/238U ratio of different spot sizes under line scanning mode

    剥蚀半径
    (μm)
    锆石GJ-1 沥青铀矿GBW04420
    206Pb/238U比值 误差(%) 206Pb/238U平均值 206Pb/238U比值 误差(%) 206Pb/238U平均值
    2 - - - 0.009915 1.42 0.010071
    - - 0.010227 1.37
    5 - - - 0.010066 1.39 0.009991
    - - 0.009916 1.61
    10 0.08578 1.58 0.08678 0.010046 1.14 0.009956
    0.08778 1.79 0.009865 0.98
    15 0.08588 1.45 0.08716 0.009875 0.76 0.009956
    0.08844 1.37 0.010037 0.88
    20 0.08743 0.88 0.08686 0.010017 0.65 0.009977
    0.08629 0.67 0.009938 0.68
    30 0.08766 0.46 0.08762 - - -
    0.08758 0.37 - -
    40 0.08671 0.28 0.08699 - - -
    0.08727 0.31 - -
    50 0.08617 0.29 0.08603 - - -
    0.08589 0.32 - -
    注:锆石难以分析到10μm以下的颗粒,而铀矿难以分析到20μm以上的颗粒,“-”代表没有此组分析和数据。
    下载: 导出CSV
  • 胡瑞忠, 温汉捷, 苏文超, 等.矿床地球化学近十年若干研究进展[J].矿物岩石地球化学通报, 2014, 33(2):127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

    Hu R Z, Wen H J, Su W C, et al.Some advances in ore deposit geochemistry in last decade[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2):127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

    Hu R Z, Fu S L, Huang Y, et al.The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model[J].Journal of Asian Earth Sciences, 2017, 137:9-34. doi: 10.1016/j.jseaes.2016.10.016

    周红英, 涂家润, 李国占, 等.砂岩型铀矿中铀矿物U-Pb年代学研究现状及研究方向[J].地学前缘, 2018, 25(6):290-295. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806024

    Zhou H Y, Tu J R, Li G Z, et al.Research on the current status and future of U-Pb chronology study of uranium minerals from the sand[J].Earth Science Frontiers, 2018, 25(6):290-295. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806024

    骆金诚, 石少华, 陈佑纬, 等.铀矿床定年研究进展评述[J].岩石学报, 2019, 35(2):589-605. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201902019

    Luo J C, Shi S H, Chen Y W, et al.Review on dating of uranium mineralization[J].Acta Geoscientia Sinica, 2019, 35(2):589-605. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201902019

    Fayek M, Harrison T M, Grove M, et al.A rapid in situ method for determining the ages of uranium oxide minerals:Evolution of the Cigar Lake Deposit, Athabasca Basin[J].International Geology Review, 2000, 42(2):163-171. doi: 10.1080/00206810009465075

    Fayek M, Kyser T K, Riciputi L R.U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada[J].The Canadian Mineralogist, 2002, 40(6):1553-1570. doi: 10.2113/gscanmin.40.6.1553

    Chipley D, Polito P A, Kyser T K.Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS[J].American Mineralogist, 2007, 92(11-12):1925-1935. doi: 10.2138/am.2007.2226

    Decrée S, Deloule É, De Putter T, et al.SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt:Constraints for the geodynamic context[J].Ore Geology Reviews, 2011, 40(1):81-89. https://www.sciencedirect.com/science/article/pii/S0169136811000515

    Eglinger A, Tarantola A, Durand C, et al.Uranium mobilization by fluids associated with Ca-Na metasomatism:A P-T-t record of fluid-rock interactions during Pan-African metamorphism (Western Zambian Copperbelt)[J].Chemical Geology, 2014, 386:218-237. doi: 10.1016/j.chemgeo.2014.07.028

    邹东风, 李方林, 张爽, 等.粤北下庄335矿床成矿时代的厘定——来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J].矿床地质, 2011, 30(5):912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012

    Zou D F, Li F L, Zhang S, et al.Timing of No.335 ore deposit in Xiazhuang uranium orefield, Northern Guangdong Province:Evidence from LA-ICP-MS U-Pb dating of pitchblende[J].Mineral Deposits, 2011, 30(5):912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012

    宗克清, 陈金勇, 胡兆初, 等.铀矿fs-LA-ICP-MS原位微区U-Pb定年[J].中国科学(地球科学), 2015, 45(9):1304-1315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509005

    Zong K Q, Chen J Y, Hu Z C, et al.In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J].Science China (Earth Sciences), 2015, 45(9):1304-1315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509005

    衣龙升, 范宏瑞, 翟明国, 等.新疆白杨河铍铀矿床萤石Sm-Nd和沥青铀矿U-Pb年代学及其地质意义[J].岩石学报, 2016, 32(7):2099-2110. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201607012

    Yi L S, Fan H R, Zhai M G, et al.Fluorite Sm-Nd isochron and pitchblende U-Pb dating in the Baiyanghe Be-U deposit, Xinjiang and their geological significances[J].Acta Petrologica Sinica, 2016, 32(7):2099-2110. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201607012

    Bonnetti C, Liu X, Mercadier J, et al.The genesis of granite- related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China:Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation[J].Ore Geology Reviews, 2018, 92:588-612. doi: 10.1016/j.oregeorev.2017.12.010

    Martz P, Mercadier J, Perret J, et al.Post-crystallization alteration of natural uraninites:Implications for dating, tracing, and nuclear forensics[J].Geochimica et Cosmochimica Acta, 2019, 249:138-159. doi: 10.1016/j.gca.2019.01.025

    宋子升.鄂尔多斯盆地杭锦旗砂岩型铀矿成矿年代学及其地质意义[D].西安: 西北大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10697-1014156290.htm

    Song Z S.Metallogenic Chronology and Its Geological Significance in Hangjinqi Sandstone-type Uranium, Ordos Basin[D].Xi'an: Northwest University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10697-1014156290.htm

    寸小妮.鄂尔多斯盆地北部纳岭沟地区砂岩型铀矿成矿年代学及其地质意义[D].西安: 西北大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10697-1017037607.htm

    Cun X N.Metallogenic Chronology and Its Geological Significance in Nalinggou Sandstone-type Uranium, Ordos Basin[D].Xi'an: Northwest University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10697-1017037607.htm

    吴柏林, 张婉莹, 宋子升, 等.鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J].地质学报, 2016, 90(12):3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    Wu B L, Zhang W Y, Song Z S, et al.Geological and geochemical characteristics of uranium minerals in the sandstone type uranium deposits in the north of Ordos Basin and their genetic significance[J].Acta Geologica Sinica, 2016, 90(12):3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    叶丽娟, 肖志斌, 涂家润, 等.LA-ICPMS与EMPA结合测定铀矿物微区原位U-Pb年龄[J].地球学报, 2019, 40(3):479-482. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201903009.htm

    Ye L J, Xiao Z B, Tu J R, et al.U-Pb isotopic dating in situ microanalysis of uranium minerals by EMPA and LA-ICPMS[J].Acta Geoscientica Sinica, 2019, 40(3):479-482. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201903009.htm

    赵溥云, 李喜斌, 营俊龙, 等.沥青铀矿铀铅同位素年龄标准物质[R].北京: 核工业北京地质研究所, 1995.

    Zhao P Y, Li X B, Ying J L, et al.Certified Reference Material for U-Pb Isotopic Dating (Pitchblende)[R].Beijing: Beijing Research Institute of Uranium Geology, 1995.

    Yuan F, Jiang S, Liu J, et al.Geochronology and geochemistry of uraninite and coffinite:Insights into ore-forming process in the pegmatite-hosted uraniferous province, North Qinling, Central China[J].Minerals, 2019, 552(9):1-23.

    Jackson S E, Pearson N J, Griffin W L, et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1-2):47-69. doi: 10.1016/j.chemgeo.2004.06.017

    Suzuki K, Adachi M, Tanaka T.Middle precambrian provenance of Jurassic sandstone in the Mino Terrane, Central Japan:Th-U-total Pb evidence from an electron microprobe monazite study[J].Sedimentary Geology, 1991, 75(1):141-147. doi: 10.1016-0037-0738(91)90055-I/

    周剑雄, 陈振宇, 芮宗瑶.独居石的电子探针钍-铀-铅化学测年[J].岩矿测试, 2002, 21(4):241-246. doi: 10.3969/j.issn.0254-5357.2002.04.001

    Zhou J X, Chen Z Y, Rui Z Y.Th-U-TPb chemical dating of monazite by electron probe[J].Rock and Mineral Analysis, 2002, 21(4):241-246. doi: 10.3969/j.issn.0254-5357.2002.04.001

    张龙, 陈振宇, 田泽瑾, 等.电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J].岩矿测试, 2016, 35(1):98-107. doi: 10.15898/j.cnki.11-2131/td.2016.01.016

    Zhang L, Chen Z Y, Tian Z J, et al.The application of electron microprobe dating method on uranium minerals in Changjiang Granite, Northern Guangdong[J].Rock and Mineral Analysis, 2016, 35(1):98-107. doi: 10.15898/j.cnki.11-2131/td.2016.01.016

    徐争启, 欧阳鑫东, 张成江, 等.电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J].岩矿测试, 2017, 36(6):641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071

    Xu Z Q, Ouyang Y D, Zhang C J, et al.Application of electron microprobe chemical dating to Datian uraninite in Panzhihua and its significance[J].Rock and Mineral Analysis, 2017, 36(6):641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071

    葛祥坤.电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J].铀矿地质, 2008, 24(3):175-180. doi: 10.3969/j.issn.1000-0658.2008.03.009

    Ge X K.Th-U-Pb dating method of electron probe microanalysis and its application foreground in uranium geology research[J].Uranium Geology, 2008, 24(3):175-180. doi: 10.3969/j.issn.1000-0658.2008.03.009

    葛祥坤, 秦明宽, 范光.电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状[J].世界核地质科学, 2011, 28(1):55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201101011

    Ge X K, Qin M K, Fan G.Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende[J].World Nuclear Geoscience, 2011, 28(1):55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201101011

    葛祥坤.电子探针定年技术在铀及含铀矿物测年中的开发与研究[D].北京: 核工业北京地质研究院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-82806-1013047873.htm

    Ge X K.Development and Research of EMPA Dating in Uranium Minerals and Other U-bearing Minerals[D].Beijing: Beijing Research Institute of Uranium Geology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-82806-1013047873.htm

    Kempe U.Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of the Kirchberg Granite (Erzgebirge, Germany)[J].Contributions to Mineralogy and Petrology, 2003, 145(1):107-118. doi: 10.1007/s00410-002-0439-5

    Jr Hurtado J M, Chatterjee N, Ramezani J, et al.Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology[C]//Nature Preceedings, 2007.

    Škácha P, Goliáš V, Sejkora J, et al.Hydrothermal uranium-base metal mineralization of the Jánská Vein, Březové Hory, Příbram, Czech Republic:Lead isotopes and chemical dating of uraninite[J].Journal of Geosciences, 2009, 54(1):1-13. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b4b998bb06b432e326f89ec23925ea70

    Cross A, Jaireth S, Rapp R, et al.Reconnaissance-style EMPA chemical U-Th-Pb dating of uraninite[J].Australian Journal of Earth Sciences, 2011, 58(6):675-683. doi: 10.1080/08120099.2011.598190

    Yuan H, Gao S, Dai M, et al.Simultaneous determina-tions of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1-2):100-118.

    耿建珍, 张健, 李怀坤, 等.10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定[J].地球学报, 2012, 33(6):877-884. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206007

    Geng J Z, Zhang J, Li H K, et al.Ten-micron-sized zircon U-Pb dating using LA-MC-ICP-MS[J].Acta Geoscientica Sinica, 2012, 33(6):877-884. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206007

    刘勇胜, 胡兆初, 李明, 等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013, 58(36):3753-3769. http://d.old.wanfangdata.com.cn/Periodical/zggxjsqy-z201612100

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(36):3753-3769. http://d.old.wanfangdata.com.cn/Periodical/zggxjsqy-z201612100

    汪双双, 韩延兵, 李艳广, 等.利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J].岩矿测试, 2016, 35(4):349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

    Wang S S, Han Y B, Li Y G, et al.U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J].Rock and Mineral Analysis, 2016, 35(4):349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

    孙金凤, 杨进辉, 吴福元, 等.榍石原位微区LA-ICPMS U-Pb年龄测定[J].科学通报, 2012, 57(18):1591-1615. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201218001

    Sun J F, Yang J H, Wu F Y, et al.In situ U-Pb dating of titanite by LA-ICPMS[J].Chinese Science Bulletin, 2012, 57(18):1591-1615. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201218001

    Tu J, Xiao Z, Zhou H, et al.U-Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry[J].Ore Geology Reviews, 2019, 109:407-412. doi: 10.1016/j.oregeorev.2019.05.001

    Cenki-Tok B, Darling J R, Rolland Y, et al.Direct dating of mid-crustal shear zones with synkinematic allanite:New in situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif[J].Terra Nova, 2014, 26(1):29-37. doi: 10.1111/ter.12066

    崔玉荣, 周红英, 耿建珍, 等.氧化物型含铀矿物LA-ICP-MS U-Pb年龄测定中的基体效应及其校正方法[J].地质通报, 2015, 34(12):2325-2333. doi: 10.3969/j.issn.1671-2552.2015.12.018

    Cui Y R, Zhou H Y, Geng J Z, et al.The matrix effects in oxide-type U-bearing mineral LA-ICP-MS U-Pb isotopic dating and their correction methods[J].Geological Bulletin of China, 2015, 34(12):2325-2333. doi: 10.3969/j.issn.1671-2552.2015.12.018

    Liu C, Mao X L, Mao S S, et al.Nanosecond and femto-second laser ablation of brass:Particulate and ICPMS measurements[J].Analytical Chemistry, 2004, 76(2):379-383. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM14719886

    杨文武, 史光宇, 商琦, 等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析, 2017, 37(7):2192-2198. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036

    Yang W W, Shi G Y, Shang Q, et al.Applications of femtosecond(fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2192-2198. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707036

    Yang Z, Fryer B J, Longerich H P, et al.785nm femtosecond laser ablation for improved precision and reduction of interferences in Sr isotope analyses using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2):341-351. doi: 10.1039/C0JA00131G

    Shaheen M, Fryer B J.Improving the analytical capa-bilities of femtosecond laser ablation multicollector ICP-MS for high precision Pb isotopic analysis:The role of hydrogen and nitrogen[J].Journal of Analytical Atomic Spectrometry, 2010, 25(7):1006. doi: 10.1039/c003879b

    袁洪林, 殷琮, 刘旭, 等.飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究[J].中国科学(地球科学), 2015, 45(9):1285-1293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509003

    Yuan H L, Yin C, Liu X, et al.High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J].Science China (Earth Sciences), 2015, 45(9):1285-1293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509003

    Horn I, von Blanckenburg F, Schoenberg R, et al.In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J].Geochimica et Cosmochimica Acta, 2006, 70(14):3677-3688. doi: 10.1016/j.gca.2006.05.002

    Schuessler J A, von Blanckenburg F.Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2014, 98:1-18. doi: 10.1016/j.sab.2014.05.002

    向伟东, 方锡珩, 李田港, 等.鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J].铀矿地质, 2006, 22(5):257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

    Xiang W D, Fang X H, Li T G, et al.Metallogenic characteristics and model of Dongsheng uranium deposit in Ordos Basin, North China[J].Uranium Geology, 2006, 22(5):257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

    肖志斌, 李惠民, 耿建珍, 等.铀矿的铀铅同位素年代学研究方法简介[J].地质学报, 2015, 89(增刊):215-216. http://d.old.wanfangdata.com.cn/Conference/8771725

    Xiao Z B, Li H M, Geng J Z, et al.Introduction to U-Pb isotope chronology of uranium mineral[J].Acta Geologica Sinica, 2015, 89(Supplement):215-216. http://d.old.wanfangdata.com.cn/Conference/8771725

图(7)  /  表(1)
计量
  • 文章访问数:  2971
  • HTML全文浏览量:  814
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 修回日期:  2019-09-11
  • 录用日期:  2019-10-20
  • 发布日期:  2020-02-29

目录

/

返回文章
返回