• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究

肖细炼, 王亚夫, 张春林, 杨小丽

肖细炼, 王亚夫, 张春林, 杨小丽. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. DOI: 10.15898/j.cnki.11-2131/td.201908020116
引用本文: 肖细炼, 王亚夫, 张春林, 杨小丽. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. DOI: 10.15898/j.cnki.11-2131/td.201908020116
XIAO Xi-lian, WANG Ya-fu, ZHANG Chun-lin, YANG Xiao-li. Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. DOI: 10.15898/j.cnki.11-2131/td.201908020116
Citation: XIAO Xi-lian, WANG Ya-fu, ZHANG Chun-lin, YANG Xiao-li. Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. DOI: 10.15898/j.cnki.11-2131/td.201908020116

交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究

基金项目: 

中国地质调查局地质调查项目 121201009000150002

中国地质调查局地质调查项目(121201009000150002)

详细信息
    作者简介:

    肖细炼, 硕士, 工程师, 主要从事地球化学分析方面的研究工作。E-mail:xiaoxilianezhou@126.com

  • 中图分类号: O657.63

Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry

  • 摘要: 银硼锡元素的丰度和变化特征可以反映区域成矿条件,指示矿床或矿化存在。碳酸盐矿物中的银硼锡是勘查地球化学及多目标地球化学中的必测元素,其测定方法是地球化学元素配套分析方案中必不可少的方法之一。由于碳酸盐矿物与普通的岩石、土壤和水系沉积物不同,该类矿物主要是灰岩、白云岩等含钙和镁元素比较高的岩石类样品,同时测定样品中银硼锡的技术难点在于高含量钙镁基体会严重干扰低含量待测元素,且摄谱过程中由于易产生二氧化碳造成样品飞溅。针对碳酸盐矿物的特殊性,本文建立了交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的分析方法。通过优化样品前处理及实验条件,用10%的盐酸处理样品,消除了基体元素钙和镁的干扰;以锗(Ge)作为内标元素进行定量,可以消除因电弧激发条件变化以及试样基体组分等外部因素造成干扰的影响;采用银与长波锗元素组成分析线对,硼和锡与短波锗元素组成分析线对,灵敏度较好;选择天然碳酸盐岩石与人工合成灰岩等12种国家一级地球化学标准物质作为标准系列,使基体组分与样品相类似;采用分析线和内标线同时扣背景的离线差减法进行背景校正。结果表明:该方法对银硼锡的检出限分别为0.008、0.49、0.18μg/g;方法精密度(RSD)对银大于10%,其余均优于10%;经国家一级地球化学标准物质验证,银硼锡测定平均值与认定值的对数差值(△lgC)均小于或等于±0.05,满足多目标区域地球化学调查规范的要求。
    要点

    (1) 在样品前处理中加入10%的盐酸,解决了基体元素干扰问题。

    (2) 锗元素作为内标元素进行定量,消除了外部因素干扰影响。

    (3) 离线差减法背景校正解决了背景干扰问题。

    HIGHLIGHTS

    (1) 10% hydrochloric acid was added during sample pretreatment to solve the interference problem of matrix elements.

    (2) Germanium was used as the internal standard element for quantitative analysis to eliminate the interference of external factors.

    (3) The off-line subtraction background correction method solved the problem of background interference.

  • 稀土资源在国民经济多种领域中发挥着不可替代的作用,随之其开采利用造成的环境影响也得到了高度关注。国外较有名的Mountain Pass稀土矿和Mount Weld稀土矿目前暂无环境研究成果可参考,仅有少数与其他稀土矿山相关的环境研究结果见于报道。如对马来西亚Kinta Valley前锡矿(伴生稀土资源)的水体及水系沉积物的稀土元素含量水平研究表明,与当地河水相比,受此前矿业活动影响的湖水和湖底沉积物稀土元素含量明显偏高,且向周围环境中扩散的可能性极高[1]。一项在越南Laichau的Namxe稀土矿开展的大气、水、土壤和植物多介质放射性污染研究结果表明,大部分土壤和植物存在放射性且造成了健康风险,放射性存在的区带与矿山的稀土富集带对应[2]。此外,国外也有较多对植物-土壤中稀土元素含量的研究,如对土壤-植物、植物不同部位、不同植物之间稀土分布模式异同的探讨及规律总结[3];或出于鉴定葡萄酒产地真伪的目的,分析地域性土壤-葡萄稀土配分模式差异[4];或结合废弃锡矿区(伴生稀土资源)土壤-植物多部位稀土元素分析结果,发现超累积植物并探讨植物修复的可能性[5]

    中国稀土矿山规模大且分布广,已报道了大量关于稀土矿山稀土及重金属污染的研究成果[6-10]。白云鄂博是世界最大的稀土矿山,已有多年开采历史,研究表明其尾矿对周边环境造成了耕地退化、粮食减产绝产、牲畜死亡等多种潜在环境威胁[11-13]。已知部分稀土元素对生物有抑制生长及毒害作用[14-15],而白云鄂博矿区周边土壤、空气,甚至是人发、尿液中的稀土元素含量都远高于地壳及其他地区相应样品的稀土背景值[16-19],尽管目前没有报道显示人群出现与稀土过量相关的疾病,但这些环境介质中的高稀土含量仍应当引起重视。此外,环境中的重金属含量长期达到一定剂量也会对生物体产生毒害作用[20]。一项研究指出白云鄂博矿区人群与对照组人群相比,晨尿样本中含有更高的重金属含量,且重金属含量随稀土元素含量增长而升高[19],因此白云矿山及周边的重金属污染也值得进一步关注。白云鄂博矿区矿业活动仍在进行并将持续开展,考虑到稀土开发的环境成本是影响稀土价格的一个重要因素[21],对矿山土壤、植物中的稀土及重金属元素含量进行调查很有必要,对于探明稀土矿区稀土及重金属污染意义重大。基于以上目的,近年来一些学者对白云鄂博矿区大气[16, 22-23]、土壤[17, 24]、植物[6]已开展稀土或重金属元素含量的研究。例如,张立锋等[6]研究了白云鄂博东矿坑50m 100m范围内铁花、沙蒿、沙打旺、沙朋、青蒿、小叶杨、猪毛菜七种植物根、茎、叶及整株不同季节稀土元素含量变化规律,发现七种植物稀土含量基本不受季节影响,其中铁花为稀土总量最高者(1023.25mg/kg),大部分植物最富集稀土的部位是叶或花。王哲等[25]对白云鄂博矿区11种优势植物开展了重金属及稀土元素含量水平研究,以筛选适合的重金属及稀土修复植物,发现稀土含量最高者(9888.64mg/kg)为风毛菊的地上部。除此之外,前人对白云矿区草本植物稀土含量特征的研究并不多,已有研究获得的结果差异较大,且重点关注的是不同植物或植物不同部位的稀土含量差异。白云鄂博主矿、东矿、东介勒格勒等矿体含矿性差异很大,现有研究尚缺乏对白云鄂博多处主要矿段的植物稀土含量的空间对比,因此不同区域植物的稀土含量是否有差异值得研究。

    基于以上现实问题考虑,本文分别采集了白云鄂博主矿、东矿、东介勒格勒的铁花植株及对应的土壤样品,以及背景区本巴台的土壤、岩石、牛粪样品,采用电感耦合等离子体质谱法(ICP-MS)对主要矿段的土壤、植物稀土及重金属元素含量开展了对比研究,拟为矿区环境调查提供基础数据。

    白云鄂博矿区是世界上最大的铁、铌、稀土复合矿山[26-27]。矿区稀土资源的开采利用始于20世纪50年代,为露天开采作业,如今已经形成以资源开采、冶炼为主的工业模式[3]。白云鄂博蕴藏的稀土资源占世界已探明稀土资源总量的38%以上[18],处于世界第一位,铌和钍资源居世界第二位。矿区东西长为16~18km,南北宽2~3km,面积48km2,为一个狭长的稀土、铁、铌矿化带[27]。白云鄂博是典型的轻稀土矿床,其稀土资源以Ce为主,La、Ce、Nd氧化物含量占稀土氧化物总量的88.5%到92.4%[28]。稀土资源主要分布在矿区的主矿体、东矿体、西矿体三个铁矿体、东部接触带、东矿下盘白云岩中,稀土矿体围岩主要为云母岩、石英岩、长石板岩、云母板岩、碳质板岩等[26]。矿区内主矿矿化最为强烈,东矿次之,西矿及东介勒格勒有较大的远景储量,但目前暂时无法加以利用[29]

    2019年8月19日至8月31日,项目组在内蒙古白云鄂博稀土矿区及周边选取11个采样点位,共采集17件植物、土壤、岩石及牛粪样品。其中本巴台为白云鄂博主矿区西边80km处一个伟晶岩群(可视为背景区域),东介勒格勒为位于东矿南侧的1km处的一个小矿体。沿主矿及东矿采集植物样品9件,包括:8件铁花样品(编号B8919、B8920、B8921-1、B8922-1、B8924-1、B8925-1、B8926-1、B8929),1件风毛菊样品(编号B8918);以及与植物配套的根系土壤样品5件(编号B8921-2、B8922-2、B8924-2、B8925-2、B8926-2)。于本巴台采集原生晕岩石样品1件(编号B8915),次生晕土壤样品1件(编号B8916-1),牛粪样品1件(编号B8916-2)。矿区采样点分布图如图 1所示,采样记录具体见表 1

    图  1  白云鄂博主矿区采样点分布图(据柯昌辉等[30])
    1—第四系;2—白垩系固阳组;3—长城系尖山组;4—长城系都拉哈拉组;5—新太古界乌拉山群;6—二叠纪二长花岗岩;7—黑云母花岗闪长岩;8—中元古代白云石碳酸岩;9—花岗岩脉;10—石英斑岩脉;11—闪长岩/闪长玢岩脉;12—碳酸岩脉;13—碱性岩脉;14—钠角闪石岩脉;15—钠辉石钠角闪石碱性岩脉;16—铁矿化体;17—低品位铁矿化带;18—矿区采样点及编号。
    本巴台采样点B8915及B8916距离主矿区80km,未在图中显示。
    Figure  1.  Map of sampling sites in main mining area of Bayan Obo (According to Ke, et al[30])
    表  1  白云鄂博矿区各类型样品稀土元素和重金属含量测试结果
    Table  1.  Contents of rare earth elements and heavy metals of samples collected from Bayan Obo mining area
    样品编号 样品类型 采样位置 矿区稀土元素含量(mg/kg)
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y
    B8915 岩石 本巴台 7.3 8.21 1.27 4.47 0.78 0.07 0.58 0.1 0.62 0.13 0.39 0.07 0.52 0.08 3.71
    B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 83.4 153 17.5 63.6 9.45 1.76 6.48 1 5.84 1.13 3.31 0.47 3.26 0.49 32.7
    B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 18.8 35 3.74 13.5 1.98 0.35 1.16 0.17 0.96 0.18 0.47 0.06 0.42 0.06 5.84
    B8918 风毛菊 高磁异常区 387 703 70.5 238 23.2 4.55 8.52 0.77 2.73 0.36 0.58 0.05 0.31 ND 10.1
    B8919 铁花 主矿南侧板岩 425 783 79.6 267 27 5.03 9.61 0.9 3.31 0.44 0.76 0.07 0.37 ND 11.7
    B8920 铁花 主矿1626平台北侧 651 1163 118 397 38.8 7.31 13.7 1.25 4.43 0.6 0.96 0.08 0.50 0.05 15.4
    B8921-1 铁花 主矿北侧 695 1174 112 360 34.1 6.35 12.2 1.17 4.19 0.55 0.88 0.08 0.45 ND 13.8
    B8921-2 土壤 主矿北侧 9039 15368 1383 4358 402 77.2 132 14.9 53.5 6.75 11.4 0.93 5.56 0.61 141
    B8922-1 铁花 主矿北侧 380 652 64.5 216 20.2 3.85 8.18 0.72 2.57 0.35 0.59 0.05 0.30 ND 8.55
    B8922-2 土壤 主矿北侧 7188 12992 1198 3773 365 70.3 138 13.9 48.6 6.16 11.5 0.88 5.26 0.59 135
    B8924-1 铁花 东矿西侧 553 1009 100 327 32.6 6.07 12.1 1.15 4.01 0.52 0.96 0.07 0.42 ND 12.3
    B8924-2 土壤 东矿西侧 8880 16851 1608 5175 503 92.4 168 17.2 59 7.57 13.3 1.02 6.10 0.67 155
    B8925-1 铁花 东矿北侧 569 1025 102 338 32.7 6.06 12.2 1.14 3.98 0.54 0.95 0.07 0.43 ND 12.7
    B8925-2 土壤 东矿北侧 9044 17174 1622 5247 519 95.3 150 18.4 62.3 7.85 15.1 1.05 6.26 0.68 165
    B8926-1 铁花 东矿东侧 416 746 75.5 250 23.8 4.44 9.36 0.82 2.89 0.39 0.61 0.05 0.29 ND 10
    B8926-2 土壤 东矿东侧 4689 8856 870 2876 286 54.5 108 10.8 39.6 5.35 9.53 0.86 4.92 0.56 116
    B8929 铁花 东介勒格勒 430 761 75 240 23.4 4.3 8.79 0.82 2.79 0.36 0.70 ND 0.30 ND 8.96
    样品编号 样品类型 采样位置 矿区稀土元素总量(mg/kg) ΣLREE/ ΣHREE 矿区重金属元素含量(mg/kg)
    ΣREE ΣLREE ΣHREE Cr Mn Ni Cu Zn Cd Pb As 重金属总量
    B8915 岩石 本巴台 28.30 22.1 6.2 3.56 170 123 65.5 12.6 6.18 0.06 55.8 0.91 481.95
    B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 383.39 328.71 54.68 6.01 71.3 743 35.7 29.8 87.4 0.15 21.7 12.7 1720.75
    B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 82.69 73.37 9.32 7.87 15.4 277 7.09 16.9 53.8 0.26 5.38 2.97 520.80
    B8918 风毛菊 高磁异常区 1449.67 1426.25 23.42 60.9 5.68 447 3.41 12.7 122 0.29 23.1 3.70 1579.88
    B8919 铁花 主矿南侧板岩 1613.79 1586.63 27.16 58.42 5.34 579 5.05 12.6 146 0.49 32.4 4.75 1866.63
    B8920 铁花 主矿1626平台北侧 2412.08 2375.11 36.97 64.24 7.46 705 5.08 11 137 0.43 32.2 3.57 2407.74
    B8921-1 铁花 主矿北侧 2414.77 2381.45 33.32 71.47 6.44 548 3.4 8.64 70.9 0.21 19.5 2.72 2080.81
    B8921-2 土壤 主矿北侧 30993.85 30627.2 366.65 83.53 54.3 6194 26 28.3 465 1.81 181 26.6 23807.01
    B8922-1 铁花 主矿北侧 1357.86 1336.55 21.31 62.72 2.77 326 2.14 7.04 64.6 0.21 14.8 2.08 1388.64
    B8922-2 土壤 主矿北侧 25946.19 25586.3 359.89 71.09 38.1 5297 26.6 32.6 583 1.73 202 28.9 24340.93
    B8924-1 铁花 东矿西侧 2059.2 2027.67 31.53 64.31 4.3 732 3.57 8.37 102 0.29 45 2.80 2299.33
    B8924-2 土壤 东矿西侧 33537.26 33109.4 427.86 77.38 40.4 9774 29.1 48.5 749 2.23 431 31.3 28893.53
    B8925-1 铁花 东矿北侧 2104.77 2072.76 32.01 64.75 4.24 631 3.2 7.31 75.2 0.19 32 2.38 2282.52
    B8925-2 土壤 东矿北侧 34127.94 33701.3 426.64 78.99 39.5 9454 29.2 37.7 778 2.21 420 32.1 31107.71
    B8926-1 铁花 东矿东侧 1540.15 1515.74 24.41 62.1 5.05 439 3.82 7.12 71.3 0.14 23.6 1.37 1877.40
    B8926-2 土壤 东矿东侧 17927.12 17631.5 295.62 59.64 58.7 5062 45.9 65 602 1.35 221 20.6 22317.55
    B8929 铁花 东介勒格勒 1556.42 1533.7 22.72 67.5 2.98 380 2.34 5.22 51.2 0.09 18.9 1.58 1573.31
    注:ND代表低于检出限(0.05mg/kg),未检出。
    下载: 导出CSV 
    | 显示表格

    植物样品使用预先清洁过的陶瓷剪刀将地上部分整株采集,带回实验室于烘箱中65℃烘干72h。完全干燥后使用Grinder GT200陶瓷振动球磨仪将植株样品粉碎,收集5g以上样品粉末用于测试稀土及重金属元素含量。

    土壤样品使用预先清洁过的塑料铲子采集于一次性密实袋中,须于野外完全风干,带回实验室后过200目筛,收集土壤粉末5g以上用于测试稀土及重金属元素含量。

    岩石样品与牛粪样品均于野外直接采集,其中岩石样品使用陶瓷震动球磨仪粉碎为待测粉末,牛粪样品须烘干72h(同植物样品)后粉碎待测。

    所有粉末样品送至国家地质实验测试中心采用电感耦合等离子体质谱仪(PE300Q,美国PerkinElmer公司)进行稀土元素(如La、Ce、Eu、Gd、Tb、Lu、Y等)及重金属元素(如Cr、Mn、Cu、Zn、Cd、Pb、As等)含量测试。上机测试前,样品的处理过程如下:称取岩石及土壤样品0.05g,置于聚四氟乙烯罐中用于封闭熔样,加入2mL氢氟酸、1mL 7.5mol/L硝酸,盖上上盖,入钢套封闭,190℃保温30h。冷却后取出内罐,在电热板上170℃蒸发至干。加入0.5mL硝酸二次蒸干,此步骤重复两次。加入5mL 7.5mol/L硝酸,将样品罐装入钢套中封闭150℃保温3h,冷却后将其内的溶液转移至50mL容量瓶中并用超纯水定容至刻度。植物和牛粪样品称取0.1g,加入1.5mL硝酸微热预消解一夜,放入聚四氟乙烯内罐中加入1mL双氧水加钢套熔样24h,冷却后使用超纯水定容至25mL。上述溶液即为ICP-MS测试用。方法依据为《硅酸盐岩岩石化学分析方法第30部分: 44个元素量测定》(GB/T 14506.30—2010),精密度(RSD)低于2%~10%,检出限为0.05×10-6

    测试过程中通过测定国家一级土壤成分分析标准物质进行质量监控,各元素测试结果与标准结果吻合。此外,使用重复样及密码样对所测样品进行质量监控,重复样品检测结果差值均小于5%,符合测试质量要求。

    白云鄂博矿区采集的各类型样品的稀土及重金属含量测试结果及统计结果见表 1。白云矿区所采集土壤的稀土总量为17927.12~34127.94mg/kg,本巴台土壤稀土总量为383.39mg/kg。白云鄂博矿区土壤的稀土总量及ΣLREE/ΣHREE值均远高于本巴台土壤,说明白云鄂博成矿及土壤风化过程中,土壤稀土元素经历了强烈的分馏,轻稀土得到显著的富集。植物的稀土总量最高达到2414.77mg/kg,其中轻稀土总量为2381.45 mg/kg,为采于主矿北侧的一个铁花样品。前人对矿区各类型矿石研究结果显示,主矿现存9种类型矿石样品的稀土总量平均为44400mg/kg[31],东矿深部8种类型256件矿石样品的稀土总量平均为60700mg/kg[32],可知白云鄂博矿区内各类型样品的稀土总量高低关系为:矿石>土壤>植物。

    白云鄂博矿区土壤样品的重金属总量(22317.55~31107.71mg/kg)为本巴台土壤重金属总量(1721mg/kg)的12.97~18.08倍。白云鄂博植物样品的重金属总量介于1388.64~2407.74mg/kg,于主矿所采集的一个铁花样品具有最高的重金属总量(2408mg/kg),风毛菊和铁花植物样品的总重金属含量无明显差异。白云鄂博主矿及东矿所采集的土壤的稀土及重金属含量均远高于本巴台土壤样品的相应含量,说明白云鄂博稀土矿在成矿过程中,土壤中的稀土和重金属元素都得到了富集。

    本次仅在本巴台地区尝试性采集牛粪样品一件,其稀土含量与土壤、植物等相比处于较低水平。

    张立锋等[6]于白云鄂博矿区采集七种植物,研究结果表明稀土含量最高者为铁花(整株),稀土总量为1023.25mg/kg。王哲等[25]在白云鄂博矿区采集11种植物的稀土总量变化范围是291.91~9888.64mg/kg,最高者为风毛菊的地上部分。本研究中所采集的风毛菊和铁花样品整株稀土总量(1357.86~2414.77mg/kg)高于张立锋等[6]在白云鄂博东矿采集的7种植物的稀土总量,低于王哲等[25]研究中的5种植物地上部分稀土总量,但高于其余6种植物地上部分稀土总量。此前,本文作者团队在甲基卡锂矿采集了康定小叶冬青植物样品,其地下部分和地上部分稀土总量分别变化于0.46~28.52mg/kg及0.57~17.3mg/kg,本次白云鄂博几种植物稀土含量均远高于甲基卡植物稀土含量,其中轻稀土元素含量与甲基卡植物对比差异更为明显,体现在:白云鄂博植物样品的各轻稀土含量达到甲基卡植物轻稀土含量的115~380倍(与甲基卡植物地下部分相比)和161~546倍(与甲基卡植物地上部分相比),重稀土元素含量则分别达到甲基卡地下部分及地上部分的6.84~52.11倍及9.27~78.27倍。另外,此前本文作者团队在贵州织金富稀土的磷矿采集的草本植物地下部分稀土总量为178.68mg/kg,相较甲基卡矿区植物要高,但仍低于本次白云鄂博所采集植物的各项稀土含量。上述对比说明植物中稀土元素含量对土壤中稀土元素含量水平的指示作用较强。

    本项目课题组此前曾在川西甲基卡锂矿区试验性采集了数件牛粪样品,与此次在本巴台所采集样品对比发现两地区牛粪样品的稀土含量差异很大。本巴台牛粪样品的各项稀土元素含量均高于甲基卡锂矿区多件牛粪样品均值,且轻稀土元素富集更为明显,轻稀土元素含量达到甲基卡均值的1.90~4.25倍;反之,锂含量(8.33mg/kg)低于甲基卡牛粪样品锂含量均值(11.58mg/kg),该现象在一定程度上说明牛粪样品中的稀土元素及锂元素含量水平可以反映特定地区稀土元素及锂元素的富集情况。

    多名学者研究了岩石—土壤—植物的稀土元素分布特征,发现岩石—土壤—植物具有一致的稀土元素含量模式[33-34]。此次工作中白云鄂博4种类型样品的稀土元素配分曲线(图 2a)显示,岩石、土壤、植物、牛粪的稀土元素配分模式相似,均显示出富集轻稀土、贫重稀土的特征,其中本巴台岩石样品有明显的Eu亏损特征。矿区各类样品均表现出相对富集轻稀土的特征,且含量最高的稀土元素均为Ce,与前人研究结果一致[10]。前人研究指出白云稀土矿中Ce含量最高,ΣCeO2超过95%,具有显著的富Ce低Y的特征[35]。本研究中土壤和植物中Ce平均质量分数分别为49.95%及48.55%,与该区前人研究结果较为相近[6]。土壤—植物重金属含量特征(图 2b)显示,两类样品重金属含量趋势相似,土壤—植物的元素继承性吸收特征明显。岩石和牛粪样品均采自本巴台,牛粪样品的Mn、Zn、Cu、As含量均几乎同等程度地低于岩石样品,Pb、Cr、Ni含量模式与岩石相似但是高于岩石样品(图 2b)。

    图  2  白云鄂博矿区各类型样品(a)稀土元素和(b)重金属元素含量对比
    Figure  2.  Comparison of (a) REE and (b) heavy metal contents of all kinds of samples from Bayan Obo mining area

    白云鄂博矿区三处矿体矿化程度差别较大,含矿性强弱为:主矿体>东矿体>东介勒格勒小矿体,于三处矿体采集铁花植株,发现三处铁花稀土总量排序为:主矿体>东矿体>东介勒格勒,与三处矿体本身含矿性变化一致,说明铁花的稀土含量基本上受不同区域稀土含矿性控制(图 3)。

    图  3  白云鄂博矿区不同区域植物中的稀土总量对比
    Figure  3.  Comparison of total REE contents in plant samples from different areas of Bayan Obo mining area

    在5个采样点采集的土壤—植物样品的稀土元素和重金属元素含量特征显示(图 4中a和b),植物的稀土元素和重金属总量基本受土壤中相应元素含量的控制。植物的稀土元素及重金属元素含量均低于土壤,不同地点含量模式相似,说明植物对土壤中多种稀土元素和重金属元素的吸收与土壤中相应元素含量密切相关。

    图  4  土壤及植物样品中(a)稀土总量和(b)重金属总量对比
    Figure  4.  Comparison of (a) total REEs and (b) total heavy metals contents of soil and plant samples

    土壤样品的稀土总量和重金属总量呈显著正相关关系(图 5a),相关系数(R2)达到0.9191,植物样品此种关系相对较弱(图 5b),但也呈正相关关系,R2为0.7707。前人对白云鄂博矿区人群尿液的研究也发现此关系[23],说明矿区土壤、植物以及人体代谢物中的重金属含量与稀土含量有明显正相关关系。上述关系出现的原因可能是稀土成矿过程中的重金属元素也同时得到了富集,或者稀土矿区开采造成了周边环境重金属污染,稀土资源越富集,开采程度越高,重金属污染越严重。

    图  5  (a) 土壤及(b)植物样品中稀土总量和重金属总量相关关系
    Figure  5.  Correlation relationship between total rare earths and total heavy metals contents of (a) soil and (b) plant samples

    中国2018年颁发的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中对农用地Cd、Cr、Pb、Zn、Cu、As、Ni等重金属含量有明确的要求,包括筛选值及管制值两种标准。若农用地土壤重金属含量低于筛选值,则由其引起的风险可忽略不计;当高于筛选值、低于或等于管制值,说明存在土壤污染风险,可能存在可食用农产品不符合食品质量标准的风险,应加强农用地及其农产品质量监测。若高于管制值,说明食用农产品有风险的可能性极高,应当采取禁止种植可食农产品、退耕还林等严格管制措施。白云鄂博矿区地处脆弱草原生态区,采取农用地质量标准中对大部分重金属较为严格的限值,即pH < 5.5的重金属筛选值,风险管制值不考虑土壤pH。该标准中给出的具体筛选值及管制值与本研究测试结果对比情况见表 2

    表  2  最新农用地土壤质量标准中土壤重金属筛选值及管制值与本研究土壤重金属含量对比
    Table  2.  Comparison of latest threshold values of heavy metals from Chinese quality standards for agricultural land and heavy metals contents in soils in this study
    元素 筛选值(mg/kg) 管制值(mg/kg) 本研究土壤样品(mg/kg)
    Cd 0.3 1.5 1.35~2.23
    Cr 150 800 38.1~58.7
    Pb 70 400 181~431
    Zn 200 - 465~778
    Cu 50 - 28.3~65.0
    As 40 200 20.6~32.1
    Ni 60 - 26.0~45.9
    注:“-”表示国家标准中未给出该元素限制值。
    下载: 导出CSV 
    | 显示表格

    本研究中所采集的土壤与农用地标准相比(图 6),多种重金属元素存在累积情况。土壤样品除Cr、Ni、As含量均低于筛选值,没有污染风险外,其余重金属元素存在一定的污染风险。1件土壤的Cu含量超过了风险筛选值,为东矿东侧的样品B8926-2。所采集土壤的Zn含量普遍偏高,6件样品中有5件超过了风险筛选值,达到筛选值的2.33~3.89倍。5件样品Cd含量超出风险筛选值,其中4件超出管制值,达到管制值的1.15~1.49倍。采自矿区的5件样品Pb含量均超出风险筛选值,其中2件样品(东矿西、东矿北)超过管制值。综上,除采于矿区80km外的本巴台土壤,采于白云鄂博各矿体周边的土壤均存在不同程度的重金属富集现象,以Zn、Cd、Pb为主,受风力、降雨等自然搬运营力的影响,容易进一步影响周边土壤及水环境,对于主矿及东矿的矿业及农牧业活动值得进一步关注。

    图  6  土壤重金属含量与农用地土壤质量标准对比
    注:横坐标“Cd×100”表示Cd扩大100倍的数值。
    Figure  6.  Comparison of heavy metal contents and heavy metal threshold values

    本文采用ICP-MS方法对白云鄂博矿区不同区域及周边的岩石—土壤—植物—牛粪样品开展稀土元素及重金属元素含量分布特征研究,研究结果表明土壤、植物、牛粪、岩石样品的稀土配分模式均显示出轻稀土富集、重稀土亏损的特征,矿区土壤和植物中含量最高的稀土元素均为Ce,质量分数分别达到49.95%及48.55%,与白云鄂博矿富集轻稀土Ce的特征一致。植物中稀土元素含量受矿区不同矿体含矿性控制,不同区域铁花植物稀土元素含量顺序为:主矿>东矿>东介勒格勒,与三个矿体含矿性强弱顺序一致。白云鄂博矿区主矿体和东矿体附近土壤存在一定程度的Zn、Cd、Pb累积,且部分地区Cd、Pb存在超出管制值的现象。

    本研究取得的结果为矿区环境调查提供了基础数据。铁花植物的稀土含量对矿体稀土含矿性反映较好,可以考虑继续开展植物研究以总结含矿地区植物的稀土异常。此外,考虑到矿区土壤存在一定程度的Zn、Cd、Pb累积,须适度加强对矿区矿业活动及其附近农牧业活动的关注。

  • 图  1   不同盐酸浓度下测定结果的RSD值

    Figure  1.   RSD values in different concentration of hydrochloric acid

    图  2   激发电流对谱线强度的影响

    Figure  2.   Effect of excitation current on the intensity of spectral lines

    图  3   (a) 瞬时强度和(b)累加强度变化曲线

    Figure  3.   Variation curves of (a) instantaneous intensity and (b) cumulative intensity

    图  4   硼元素背景校正与不扣背景对比

    Figure  4.   Comparison of background corection and non-background correction of boron

    表  1   地球化学标准物质及银硼锡含量

    Table  1   Geochemical standard substances and content of Ag, B and Sn

    标准物质编号 标准物质类型 待测元素含量(μg/g)
    Ag B Sn
    GBW07129 碳酸盐岩石 0.016 1.3 0.7
    GBW07128 碳酸盐岩石 0.021 2.2 0.6
    GBW07131 碳酸盐岩石 0.016 6.4 0.7
    GBW07136 碳酸盐岩石 0.022 47.7 0.6
    GBW07712 合成灰岩 0.030 2.2 0.28
    GBW07713 合成灰岩 0.060 5.2 0.58
    GBW07714 合成灰岩 0.11 10 1.1
    GBW07715 合成灰岩 0.21 20 2.1
    GBW07716 合成灰岩 0.51 50 5.1
    GBW07717 合成灰岩 1.0 100 10
    GBW07718 合成灰岩 2.0 200 20
    GBW07719 合成灰岩 5.0 500 50
    下载: 导出CSV

    表  2   方法的分析线对

    Table  2   Analytical line pairs of the method

    待测元素 分析线波长
    (nm)
    内标线波长
    (nm)
    Ag Ag 328.0683 Ge 326.9494
    B B 249.7733 Ge 270.9626
    Sn Sn 283.9649 Ge 270.9626
    下载: 导出CSV

    表  3   方法精密度

    Table  3   Precision tests of the method

    标准物质
    编号
    Ag B Sn
    测定值
    (μg/g)
    RSD
    (%)
    测定值
    (μg/g)
    RSD
    (%)
    测定值
    (μg/g)
    RSD
    (%)
    GBW07127 0.021 10.52 1.87 3.53 0.69 5.89
    GBW07131 0.018 11.31 6.36 2.23 0.71 5.42
    GBW07135 0.044 8.20 14.77 1.85 1.11 5.12
    下载: 导出CSV

    表  4   方法准确度

    Table  4   Accuracy tests of the method

    待测元素 项目 GBW07127 GBW07130 GBW07131 GBW07132 GBW07133 GBW07134 GBW07135 GBW07136
    认定值(μg/g) 0.02 0.013 0.016 0.019 0.029 0.035 0.045 0.022
    Ag 平均值(μg/g) 0.021 0.014 0.018 0.022 0.032 0.034 0.044 0.024
    ΔlgC 0.02 0.04 0.04 0.05 0.04 -0.01 -0.01 0.03
    认定值(μg/g) 1.9 1.47 6.4 3.7 3.1 2.3 14.8 47.7
    B 平均值(μg/g) 1.87 1.45 6.36 3.68 3.19 2.29 14.77 48.10
    ΔlgC -0.01 -0.01 0.00 0.00 0.01 0.00 0.00 0.00
    认定值(μg/g) 0.7 0.5 0.7 0.6 0.5 0.9 1.1 0.6
    Sn 平均值(μg/g) 0.69 0.53 0.71 0.57 0.46 0.94 1.11 0.56
    ΔlgC 0.00 0.03 0.00 -0.03 -0.04 0.02 0.00 -0.03
    下载: 导出CSV
  • 赵博, 张德会, 于蕾, 等.从克拉克值到元素的地球化学性质或行为再到成矿作用[J].矿物岩石地球化学通报, 2014(2):252-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201402016

    Zhao B, Zhang D H, Yu L, et al.From clark values to elemental geochemical properties or behaviors, and to mineralization[J].Bulletin of Mineralogy, Petroloy and Geochemisty, 2014(2):252-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201402016

    李惠, 张国义, 禹斌, 等.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘, 2010, 17(1):287-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201001023

    Li H, Zhang G Y, Yu B, et al.Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J].Earth Science Frontiers, 2010, 17(1):287-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201001023

    张勤.多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J].第四纪研究, 2005, 5(3):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200503004

    Zhang Q.A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J].Quaternary Sciences, 2005, 5(3):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200503004

    陈郑辉, 王登红, 盛继福, 等.中国锡矿成矿规律概要[J].地质学报, 2015, 89(6):1026-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201506003

    Chen Z H, Wang D H, Sheng J F, et al.The metallogenic regularity of tin deposits in China[J].Acta Geologica Sinica, 2015, 89(6):1026-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201506003

    《岩石矿物分析》编委会.岩石矿物分析(第四版第四分册)[M].北京:地质出版社, 2011:781-787.

    The editorial committee of Rock and Mineral Analysis. Rock and mineral analysis (The fourth edition:Vol.Ⅳ)[M].Beijing:Geological Publishing House, 2011:781-787.

    叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004:220-226.

    Ye J Y, Jiang B L.Regional geochemical exploration sample analysis method[M].Beijing:Geological Publishing House, 2004:220-226.

    Eggin S M, Woodhead J D, Kinslet L, et al.A sample method for the precise analysis determination of ≥ 40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J].Chemical Geology, 1996, 134:311-326. https://www.sciencedirect.com/science/article/abs/pii/S0009254196001003

    胡圣虹, 陈爱芳, 林守麟, 等.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J].地球科学——中国地质大学学报, 2000, 25(2):186-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200002014

    Hu S H, Chen A F, Lin S L, et al.ICP-MS analytical research into 40 trace and ultra-trace elements in geological samples[J].Earth Science-Journal of China University of Geosciences, 2000, 25(2):186-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200002014

    Ralf M, Jürgen H, Heike T, et al.Multielement trace determination in SiC powders:Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV-ICP-OES and DC arc OES[J].Analytical and Bioanalytical Chemistry, 2005, 383:1060-1074. doi: 10.1007/s00216-005-3415-x

    王艳君, 蒋晓光, 张彦甫, 等.电感耦合等离子体原子发射光谱法(ICP-AES)测定铜磁铁矿中铜、锰、铝、钙、镁、钛和磷的含量[J].中国无机分析化学, 2015, 5(3):64-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201503015

    Wang Y J, Jiang X G, Zhang Y F, et al.Determination of Cu, Mn, Al, Ca, Mg, Ti and P in copper magnetite by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):64-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201503015

    石华, 陶莉萍, 安国荣.电感耦合等离子体发射光谱(ICP-AES)碳酸盐型石墨中硅、铁、铝等9种元素[J].中国无机分析化学, 2016, 6(1):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201601015

    Shi H, Tao L P, An G R.Determination of nine elements in carbonate graphite ores by ICP-AES[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201601015

    张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验(化学分册), 2005, 41(8):547-552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200508003

    Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200508003

    张勤, 李国会, 樊守忠, 等.X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J].分析试验室, 2008, 27(11):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200811014

    Zhang Q, Li G H, Fan S Z, et al.Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J].Chinese Journal of Analysis Laboratory, 2008, 27(11):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys200811014

    童晓民, 王楠, 董再蒸.低稀释比熔片X射线荧光法分析钼精矿中主次微量元素[J].分析试验室, 2019, 38(3):369-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201903025

    Tong X M, Wang N, Dong Z Z.X-ray fluorescence analysis of major minor and minim elements in molybdenum concentrates using fused glass disc method with low dilution ratio[J].Chinese Journal of Analysis Laboratory, 2019, 38(3):369-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201903025

    王鹤龄, 李光一, 曲少鹏, 等.氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J].岩矿测试, 2017, 36(4):367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125

    Wang H L, Li G Y, Qu S P, et al.Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(4):367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125

    Flórián K, Fischer W, Nickel H.Direct solid sample analysis of SiC-powders by DC glow discharge and DC-arc emission spectroscopy[J].Fresenius Journal of Analytical Chemistry, 1994, 349:174-175. doi: 10.1007/BF00323259

    Tibor K, Jürgen H, Otto F.Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry.Optimization of DC arc excitation (current, atmosphere and chemical modifier)[J].Microchimica Acta, 2007, 156:231-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=380e5437e7ef9ae9ad9873c46a1f7363

    刘江斌, 武永芝.原子发射光谱法快速测定矿石中锡[J].冶金分析, 2013, 33(3):65-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201303012

    Liu J B, Wu Y Z.Rapid determination of tin in ore by atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(3):65-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201303012

    姚建贞, 郝志红, 唐瑞玲, 等.固体发射光谱法测定地球化学样品中的高含量锡[J].光谱学与光谱分析, 2013, 33(11):3124-3127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201311056

    Yao J Z, Hao Z H, Tang R L, et al.Determination of high content of tin in geochemical samples by solid emission spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(11):3124-3127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201311056

    余宇, 和振云, 毛振才, 等.交流电弧发射光谱的不同灵敏度谱线测定锡[J].岩矿测试, 2013, 32(1):44-47. http://www.ykcs.ac.cn/article/id/aa84a070-7c10-44c2-b153-53d8b35c453a

    Yu Y, He Z Y, Mao Z C, et al.Determination of tin by spectral lines with different sensitivity of alternating current arc emission spectroscopy[J].Rock and Mineral Analysis, 2013, 32(1):44-47. http://www.ykcs.ac.cn/article/id/aa84a070-7c10-44c2-b153-53d8b35c453a

    朱英.改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J].资源环境与工程, 2007, 21(4):489-491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk200704033

    Zhu Y.Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J].Resources Environment & Engineering, 2007, 21(4):489-491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk200704033

    胡跃波, 石亚萍, 李蓓, 等.交流电弧原子发射光谱法测定地质样品中的微量银[J].理化检验(化学分册), 2015, 51(10):1414-1417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201510014

    Hu Y B, Shi Y P, Li B, et al.Determination of trace silver in geological samples by AC-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(10):1414-1417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201510014

    辛文芳.交流电弧原子发射光谱法测定锶矿石中银[J].冶金分析, 2016, 36(8):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201608011

    Xin W F.Determination of silver in strontium ore by alternating current Arc atomic emission spectrometry[J].Metallurgical Analysis, 2016, 36(8):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201608011

    张庆华, 万飞, 杨婷.发射光谱深孔大电极法测定硼、锡、银[J].吉林地质, 2009, 28(2):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jldz200902030

    Zhang Q H, Wan F, Yang T.Determination of boron, tin and silver by emission spectroscopy deep hole, large electrode method[J].Jilin Geology, 2009, 28(2):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jldz200902030

    郑瑞华.水平电极发射光谱法测定多目标生态地球化学土壤样品中的银[J].福建分析测试, 2007, 16(3):38-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjfxcs200703010

    Zheng R H.Determination of silver in multi-purposes eco-geochemistry soil samples by level electrode emission spectrometry[J].Fujian Analysis and Testing, 2007, 16(3):38-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjfxcs200703010

    丁春霞, 王琳, 孙慧莹, 等.发射光谱法测定生态地球化学调查样品中的银锡硼[J].黄金, 2012, 33(10):55-58. http://www.cqvip.com/QK/90449X/201210/43625398.html

    Ding C X, Wang L, Sun H Y, et al.Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J].Gold, 2012, 33(10):55-58. http://www.cqvip.com/QK/90449X/201210/43625398.html

    吴葆存.发射光谱法测定碳酸盐岩矿样品中的银、锡、硼[J].黄金, 2003, 24(11):46-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj200311014

    Wu B C.Determination of silver, tin and boron in carbonate rock ore sample by atomic emission spectrometry (AES)[J].Gold, 2003, 24(11):46-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj200311014

    张文华, 张芳.发射光谱法测定碳酸盐岩石样品中8个痕量元素[J].岩矿测试, 1995, 14(1):37-40. http://www.ykcs.ac.cn/article/id/ykcs_19950116

    Zhang W H, Zhang F.Determination of 8 trace elements in carbonate rock samples by emission spectrometry[J].Metallurgical Analysis, 1995, 14(1):37-40. http://www.ykcs.ac.cn/article/id/ykcs_19950116

    郝志红, 姚建贞, 唐瑞玲, 等.直流电弧全谱直读原子发射光谱法(DC-ARC-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J].光谱学与光谱分析, 2015, 35(2):527-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201502055

    Hao Z H, Yao J Z, Tang R L, et al.Study on the method for the determination of trace boron, molybdenum, silver, tin, lead in geochemical samples by direct current arc of full spectrum direct reading atomic emission spectroscopy (DC-ARC-AES)[J].Spectroscopy and Spectral Analysis, 2015, 35(2):527-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201502055

    李小辉.交流电弧直读原子发射光谱法快速测定钼矿石中的银[J].理化检验(化学分册), 2017, 53(6):716-718. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017070500117826

    Li X H.Rapid determination of silver in molybdenum ore by AC direct reading atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6):716-718. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017070500117826

    肖细炼, 王亚夫, 陈燕波, 等.交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J].冶金分析, 2018, 38(7):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201807004

    Xiao X L, Wang Y F, Chen Y B, et al.Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J].Metallurgical Analysis, 2018, 38(7):27-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201807004

  • 期刊类型引用(1)

    1. 李欣尉,李超,周利敏,赵鸿. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演. 岩矿测试. 2020(02): 251-261 . 本站查看

    其他类型引用(1)

图(4)  /  表(4)
计量
  • 文章访问数:  3191
  • HTML全文浏览量:  1100
  • PDF下载量:  72
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-08-01
  • 修回日期:  2019-11-07
  • 录用日期:  2020-04-17
  • 发布日期:  2020-08-31

目录

/

返回文章
返回