Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion
-
摘要: 我国上扬子地台地区在奥陶系—志留系之交广泛发育蕴含丰富页岩气资源的五峰组—龙马溪组富有机质沉积岩。采用Re-Os同位素体系对该套沉积地层进行研究,不仅能得到精确的地层沉积年龄,同时根据Re、Os元素的富集机制,对该时期沉积环境进行有效反演,可以为这一阶段发生的地球历史上第二大规模的生物绝灭事件的触发机制提供更合理的解释。本文在贵州正安县班竹1井岩心采集11件碳质泥岩样品,岩心样品连续且完整跨越奥陶系五峰组—志留系龙马溪组界线地层,通过对该样品开展高精度Re-Os同位素研究,获得了奥陶系—志留系地层界线Re-Os同位素年龄为443.68±6.24Ma[2σ,n=7,(187Os/188Os)i=0.699±0.019,MSWD=0.55],其结果与国际地层委员会发布的年龄(443.7±1.5Ma)高度一致,为奥陶系—志留系界线年龄提供了直接、准确的年龄依据。Os同位素特征反映了大量陆源碎屑参与成岩过程、多期火山活动的发生及冰期向间冰期的转换。连续沉积地层Re-Os同位素特征的变化反映了研究区奥陶系五峰组—志留系龙马溪组沉积环境经历富氧—缺氧—富氧的变化,指示赫南特期冰川事件和火山喷发共同造成了生物大绝灭并促进了有机质的富集,为五峰组—龙马溪组富有机质沉积岩提供了生烃潜力。
-
关键词:
- Re-Os同位素定年 /
- 奥陶系—志留系界线 /
- Os同位素特征 /
- 古环境演化 /
- 五峰组—龙马溪组富有机质沉积岩 /
- 热电离质谱法
要点(1) 采用Re-Os同位素定年技术首次直接获得了上扬子地台地区奥陶系—志留系地层界线年龄。
(2) 187Os/188Os变化规律指示五峰组—龙马溪组地层沉积经历了富氧—缺氧—富氧的环境转变。
(3) Os同位素特征反映了五峰组—龙马溪组地层沉积过程中大量的陆源物质供给。
(4) Re-Os同位素体系在反演火山活动、冰期事件与生物绝灭事件的相互关系中显现重要潜力。
HIGHLIGHTS(1) The Ordovician—Silurian stratigraphic boundary age of the Yangtze platform was obtained by the Re-Os isotope dating technique for the first time.
(2) The variation of 187Os/188Os indicated that the sedimentary environment of the Wufeng Formation—Longmaxi Formation carbonaceous mudstone had undergone the transformation of oxidation-reduction-oxidation.
(3) Os isotope characteristics effectively reflected the supply of terrigenous detrital during deposition.
(4) The Re-Os isotope system showed important potential in inversion of the relationship between volcanic eruptions, Hirnantian glaciation and sedimentary environmental changes and biological extinction events.
Abstract:BACKGROUNDOrganic-rich sedimentary rocks of the Wufeng-Longmaxi Formation are widely developed in the Ordovician-Silurian boundary of the Upper Yangtze platform in China, which is rich in shale gas resources. Using the Re-Os isotope system to study this set of sedimentary formations, not only can the precise age of the formation be obtained, but also the sedimentary environment of this period based on the enrichment mechanism of Re and Os elements can be inferred. This provides a more reasonable explanation for the trigger mechanism of the second large-scale biological extinction event in Earth's history.OBJECTIVESTo accurately constrain the age of carbonaceous mudstone and infer the conditions of the paleoenvironment.METHODSThe 11 carbonaceous mudstone samples from dirll core of Banzhu No.1, Zheng'an County, Guizhou Province were studied. These dirll core samples were continuous across the boundary of the Ordovician Wufeng Formation-Silurian Longmaxi Formation. Through the high precision Re-Os isotopic dating of the 11 samples, the Ordovician-Silurian boundary stratigraphic age was obtained.RESULTSThe Re-Os isotope age was calculated to be 443.68±6.24Ma[2σ, n=7, (187Os/188Os)i=0.699±0.019, MSWD=0.55]. The results were highly consistent with the age (443.7±1.5Ma) published by the International Commission on Stratigraphy, which provided a direct and accurate age basis for the Ordovician-Silurian boundary. Os isotope characteristics showed that amounts of terrigenous detrital were involved in the diagenesis, the occurrence of multi-stage volcanic activities and the transition from glacial period to interglacial period. The Re-Os isotopic features of the continuous sedimentary strata reflected that the sedimentary environment of the Ordovician Wufeng Formation-Silurian Longmaxi Formation had undergone the change of oxygen enrichment-oxygen enrichment-rich oxygen enrichment in this study area.CONCLUSIONSHirnantian glaciation events and volcanic eruption caused biological extinction and together promoted organic matter enrichment, providing hydrocarbon generation potential for the Wufeng Formation-Longmaxi Formation organic-rich sedimentary rocks. -
重晶石是重要的含钡矿物,主要用于油气钻井中泥浆的加重剂,也是制备含钡化工产品的重要矿物原料[1]。硫酸钡是评价重晶石质量的主要指标,含量范围在46%~96%之间。重晶石常与石英、方解石、白云石、菱铁矿、菱锰矿、天青石、萤石、硫化矿物(黄铁矿、方铅矿、闪锌矿、黄铜矿)及其氧化物伴生,一般含二氧化硅、钙、锶、铅等。目前重晶石中硫酸钡的主要测定方法有:硫酸钡重量法、铬酸钡容量法。硫酸钡重量法以称重反应生成的硫酸钡的方式测定硫酸钡量;铬酸钡容量法通过滴定铬酸根离子间接测定硫酸钡量;两种方法检测流程均繁琐、复杂,且容量法分析条件不易控制,铅、锶在两种方法中都会与钡共沉淀,导致硫酸钡的测定结果偏高,样品中含锶时需要用其他方法测定锶进行差减校正。应用电感耦合等离子体发射光谱法(ICP-OES)测定硫酸钡含量的方法已有报道[2],分析流程需要两次高温熔样,两次过滤,流程仍较复杂。采用熔融制样X射线荧光光谱法(XRF)测定地质样品中的组分较为快速、简便[3-9],该法用于测定钡含量已有文献报道[10-13],例如仵利萍等[10]和曾小平等[11]以熔融制样XRF法测定重晶石中的主次量元素,可以快速测定总钡量,样品中碳酸钡的钡量会计入硫酸钡量,测定方法中未除去碳酸钡,不能准确测定其中的硫酸钡量。因此,采用XRF法测定重晶石中的硫酸钡时,样品需要进行酸处理以除去碳酸钡、铅等干扰,但样品经酸处理后不同样品的剩余量不同,造成熔剂与样品的比例不确定,仍然不能准确测定硫酸钡的含量。
本文优化了样品前处理条件、XRF分析中熔片条件和仪器工作条件等因素,取一定量样品以10%的盐酸和10%的硝酸溶解过滤除去碳酸钡、硫酸钙及铜、铅、锌等有色金属元素,未溶解的样品在700℃下灼烧,灼烧后将样品量以氧化铝补充到初始取样量,以重晶石国家标准物质、岩石国家标准物质、高纯硫酸钡及人工混合的校准样品制作标准曲线,实现了XRF熔片法准确测定重晶石中的硫酸钡,对需要样品前处理XRF测定组分的分析方法提供了解决方案。
1. 实验部分
1.1 仪器及工作条件
Axios顺序扫描式波长色散X射线荧光光谱仪(荷兰PANalytical公司),陶瓷薄铍端窗(75 μm)超尖锐铑钯X射线管,SuperQ 4.0定量分析软件。
已有文献对XRF法测定钡的分析参数作了系统的研究[10-13],本实验根据钡元素的性质,选择低电压,高电流;粗准直器;无滤光片;背景点选择在长波侧。重晶石中钡及主要元素的测量条件见表 1。
表 1 XRF仪器测量条件Table 1. Measurement parameters of XRF instrument元素 谱线 晶体 准直器
(μm)探测器 滤光片 管电压
(kV)管电流
(mA)2θ(°) 脉冲高度分析器 测量时间(s) 峰值 背景 LL PL 峰值 背景 Rh Kα-C LiF 200 150 Scint. Al(200 μm) 60 60 18.4386 - 26 78 20 10 Sr Kα LiF 200 300 Scint. Al(200 μm) 60 60 25.1190 0.6602 22 78 20 10 Ba Lα LiF 200 300 Flow None 40 90 87.1708 1.3070 33 66 20 10 S Kα Ge 111 300 Flow None 30 120 110.6960 1.6632 35 65 20 10 Ca Kα LiF 200 300 Flow None 30 120 113.1450 -1.0626 32 73 20 10 Fe Kα LiF 200 15 Flow None 60 60 57.5264 -0.9716 15 68 20 10 Ti Kα LiF 200 300 Flow None 40 90 8601904 -1.1912 28 71 20 10 SQP电子分析天平(赛多利斯科学仪器有限公司,北京)。
HMS-Ⅱ-MXZ型高频熔样机(成都多林电器有限公司),可同时熔融2个样品,铂黄合金坩埚。
1.2 主要试剂
盐酸、硝酸、氯化铵、三氧化二铁、氧化镁、氧化铝、硝酸铵、溴化锂、碘化铵(分析纯)。
四硼酸锂+偏硼酸锂混合熔剂(分析纯,质量比67:33),600℃灼烧2 h,冷却后置于干燥器中备用。
1.3 实验方法
准确称取在105℃干燥2 h的样品0.2000 g,置于50 mL烧杯中,加10 mL 10%的盐酸、4 mL 10%的硝酸,盖上表面皿,于低温电热板上加热微沸30 min(随时加水控制体积10 mL),取下,用水吹洗表面皿及杯壁,冷却至室温,用慢速滤纸定量过滤,将全部未溶解的样品移至定量中速滤纸上,水洗至无氯离子,将沉淀连同滤纸一起置于50 mL瓷坩埚中,置于高温炉中低温烘干后升温灰化,于700℃灼烧30 min,取出,冷却至室温,转移到称量皿称量灼烧物质量,以氧化铝补加到0.2000 g,置于原坩埚中,称取6.0000 g四硼酸锂+偏硼酸锂混合熔剂(质量比67:33) 和0.5 g硝酸铵于坩埚中,搅匀,转移到铂黄合金坩埚中,加饱和溴化锂溶液0.4 mL,于高频熔样机上650℃预氧化3 min,1075℃熔融2 min,加碘化铵20 mg,摇动熔融4.5 min,再加碘化铵20 mg,摇动熔融1.5 min后倒入已预热的铂金合金模具中,冷却后倒出,1 h后置于XRF仪器进样交换器中测定。
1.4 校准样品
以7个重晶石国家标准物质GBW07811~GBW07817、2个岩石国家标准物质GBW07111和GBW07132、高纯硫酸钡以及人工配制的校准样品做标准系列,所选的标准物质不经酸处理,全样熔片,以标准物质中的全钡量换算为全硫酸钡量。
2. 结果与讨论
2.1 样品前处理方法研究
2.1.1 样品酸处理方法的选择
重晶石矿石中除含有硫酸钡外,伴生矿物可能含有碳酸钡、硫酸钙、铅、锌等成分,影响硫酸钡的测定结果,毛香菊等[2]以10%的盐酸溶解样品、过滤除去干扰组分,ICP-OES法测定重晶石选矿样品中的硫酸钡,其结果与重量法一致。对于XRF法测定重晶石中的硫酸钡,应除去样品中的碳酸钡以及铜、铅、锌等对铂黄合金坩埚造成腐蚀的组分,熔融过程中预氧化难以消除其影响,样品前处理应考虑将这些组分尽量除去,以满足对样品熔融的要求。
硫酸钡不溶于酸,选择盐酸、盐酸+氯化铵、盐酸+硝酸体系处理样品,以硫化物型重晶石标准物质GBW07816和多金属矿标准物质GSO-2考察样品的处理效果,以选定的处理方法溶解样品,过滤后的滤液定容、摇匀后以火焰原子吸收光谱法测定滤液中的铜、铅、锌,计算方法的溶出率,结果见表 2。表 2结果表明:单独使用盐酸或盐酸+氯化铵、盐酸+硝酸均可以较好地溶解铅;盐酸、盐酸+氯化铵体系对铜、锌的溶解效果不佳,盐酸+硝酸体系对铜、铅、锌的溶出效果均较好。本法选择以10%盐酸10 mL+10%硝酸4 mL体系前处理样品。
表 2 样品前处理方法及铜铅锌的溶出率Table 2. Sample pretreatment methods and dissolution rate of Cu, Pb, Zn样品编号 前处理方法 溶出率(%) Pb Cu Zn GBW07816 10%盐酸10 mL 97.56 - 40.96 GSO-2 10%盐酸10 mL 99.08 40.95 41.78 GBW07816 10%盐酸10 mL+0.5 g氯化铵 99.76 - 67.82 GSO-2 10%盐酸10 mL+0.5 g氯化铵 100.0 41.9 40.14 GBW07816 10%盐酸10 mL+1 g氯化铵 99.76 - 86.17 GSO-2 10%盐酸10 mL+1 g氯化铵 99.96 29.52 46.01 GBW07816 10%盐酸10 mL+10%硝酸2 mL 99.94 - 96.01 GSO-2 10%盐酸10 mL+10%硝酸2 mL 100.0 89.52 95.31 GBW07816 10%盐酸10 mL+10%硝酸4 mL 99.92 - 99.73 GSO-2 10%盐酸10 mL+10%硝酸4 mL 100.0 91.43 98.84 注:“-”表示标准物质无标准值,未计算溶出率。 2.1.2 样品与熔剂稀释比的选择
样品的熔融程度是影响方法准确度的重要因素[14-15],样品充分熔融,方法的精密度、准确度高。仵利萍等[10]以样品与熔剂1:30的稀释比制作熔片测定重晶石中的总钡量,熔片效果较好。本文以样品与熔剂的稀释比为1:10、1:15、1:20、1:30、1:40,各稀释比制作6个玻璃样片进行实验,上机测定钡的谱线强度,计算标准偏差,结合熔片质量情况确定最佳稀释比。结果表明:样品与熔剂稀释比为1:30时样片清亮,熔融物流动性好,6个样片的钡强度标准偏差小,因此本实验选择样品与熔剂稀释比为1:30。
2.1.3 样品量对分析结果的影响
样品经稀酸处理后,碳酸盐、硫化物等易溶于酸的物质被溶解分离除去,样品量减少,不同样品剩余量不同。剩余样品按原样品量与熔剂1:30的比例熔融后测定,标准物质硫酸钡的测定值偏高;剩余样品以熔剂补加到原取样量再按样品量与熔剂1:30的比例熔融测定,标准物质测定结果偏低。证明样品经酸处理后,不能直接加熔剂熔融后XRF法测定其中的组分,其原因为样品经处理后样品量减少,熔剂与样品比例不确定,导致分析结果出现较大偏差。
研究以化学性质稳定的氧化物将剩余样品补充到样品的初始取样量。选取的氧化物在样品熔融过程中应无挥发,对钡的基体效应小,贮存过程中不发生吸水潮解、反应等现象。氧化铝、三氧化二铁、氧化镁是可选择的补加剂,过高的铁组分会增加熔融体的黏度,不宜单独使用,选择以三氧化二铁+氧化镁(质量比70:30) 混合物、氧化铝为补加剂,熔融制片测定,标准物质测定值见表 3。结果表明:将灼烧物量补加到初始取样量后,样品与熔剂比例一致,标准物质的检测结果基本满足规范要求。三氧化二铁是钡元素的基体校正组分,三氧化二铁+氧化镁(70:30) 混合物补加到不同样品中的量不同,硫酸钡测定结果的准确度较氧化铝为补加成分的结果略差,因此选择以氧化铝为补加成分。
表 3 不同补加成分的标准物质中硫酸钡的测定值Table 3. Analytical results of BaSO4 in standards materials adding different ingredients标准物质
编号补加剂 BaSO4含量 标准值
(%)测量值
(%)相对误差
(%)允许相对误差
(%)GBW07811 三氧化二铁+
氧化镁(70:30)42.32 42.23 -0.21 1.37 GBW07815 三氧化二铁+
氧化镁(70:30)67.04 66.83 -0.31 0.84 GBW07816 三氧化二铁+
氧化镁(70:30)18.87 18.66 -1.11 2.39 GBW07811 氧化铝 42.32 42.41 0.21 1.37 GBW07815 氧化铝 67.04 66.91 -0.19 0.84 GBW07816 氧化铝 18.87 19.02 0.79 2.39 2.1.4 熔片温度的选择
仵利萍等[10]于1050~1150℃、曾小平等[11]于1050℃熔融重晶石样品,熔片效果较好。熔片温度过低,熔融物流动性差,样片效果差,所制样片中有微小不熔颗粒,分析结果精密度差;熔片温度过高,熔融物挥发严重,黏度增大而粘连坩埚,造成不易脱埚。实验证明当温度为1075℃时,钡的谱线强度值相对稳定,测量值的标准偏差和相对标准偏差小且趋于稳定;当高于此温度,熔融物挥发量大,熔融物黏度高,不易脱埚。因此,本实验选择熔片温度为1075℃。
2.1.5 硝酸铵用量的选择
样品中含有还原性物质会对坩埚造成腐蚀,加入氧化剂可以防止还原性物质对坩埚的损坏,由于取样量小,样品经过了稀酸处理、高温灼烧,样品中的还原性物质较少,氧化剂的加入量不必太多。以硝酸铵作氧化剂,过多的硝酸铵会增大熔融物的黏度,需提高碘化铵的加入量以利于脱模。实验选择加入0.25、0.50、0.75、1.0 g硝酸铵,根据熔片情况确定硝酸铵最佳加入量。实验结果表明:硝酸铵加入量小于0.50 g时熔融物的流动性较好;但加入量为0.25 g时熔好的样片脆性较大,冷却过程中部分样片会出现爆裂现象;加入量大于0.75 g时高温熔融物流动性差、黏度大、脱模剂需要量大,熔片效果变差。因此,本实验选择硝酸铵选择加入量为0.50 g。
2.2 基体效应校正
基体效应[16]是试样中元素间吸收、增强效应和物理化学效应对待测元素特征X射线强度的影响。经验系数法是目前XRF分析中准确定量分析的重要基体校正方法,本方法选择经验系数法进行校正。以Fe2O3、SiO2、CaO含量对钡含量进行校正后,硫酸钡的曲线离散度等参数明显改善,GBW07811的硫酸钡的测量误差<0.24%,故选择参与基体校正。
2.3 方法技术指标
2.3.1 方法检出限
根据XRF法检出限计算公式:
$\frac{{3\sqrt 2 }}{m}\sqrt {\frac{{{I_{\rm{b}}}}}{{{t_{\rm{b}}}}}} $ (式中:m为单位含量的计数率,94.3642;Ib为背景计数率,1.5345;tb为峰值和背景总计数时间,60 s),计算得到硫酸钡检出限为72 μg/g,满足对重晶石中硫酸钡的检测要求。本法检出限略高于ICP-OES法,但远低于重晶石10%的边界品位,完全可以满足重晶石中硫酸钡的测定要求。2.3.2 方法精密度
按实验方法对标准物质GBW07815重复制备12个样片,按确定的测量方法测定硫酸钡,计算平均值为66.94%,相对标准偏差(RSD)为0.36%,与仵利萍等[10]采用熔融制样XRF法报道的氧化钡的精密度(RSD为0.36%)相近,优于毛香菊等[2]采用ICP-OES法的精密度(RSD为0.39%~4.1%)。这些对比表明本方法重现性较好,满足DZ/T 0130—2006《地质矿产实验室质量管理规范》的要求。
2.4 与经典化学方法的比对
选取不同硫酸钡含量的重晶石样品10件,以本法及硫酸钡重量法(由国土资源部保定矿产资源监督检测中心检测)测定,进行方法比对。测定结果(表 4)表明:本法与硫酸钡重量法结果相符,表明适用于重晶石中硫酸钡的测定。
表 4 本方法与经典化学分析方法比较Table 4. A comparison of analytical results by this method and traditional chemical methods样品
编号重量法测定值
(%)本法测定值
(%)平均值
(%)相对偏差
(%)允许相对偏差
(%)1 11.40 11.21 11.31 0.84 4.38 2 59.12 58.97 59.05 0.13 1.39 3 34.58 35.64 35.11 -1.51 2.26 4 67.44 68.70 68.07 -0.93 1.16 5 71.16 71.52 71.34 -0.25 1.09 6 51.80 52.84 52.32 -0.99 1.59 7 5.52 5.69 5.61 -1.52 5.85 8 44.29 44.28 44.29 0.01 1.87 9 61.02 60.73 60.88 0.24 1.34 10 87.49 87.32 87.41 0.10 0.77 3. 结论
采用XRF法分析重晶石中的硫酸钡时,样品需要前处理导致样品量减少,无法准确测定其中的待测组分。本研究提出了以对钡基体效应小的氧化铝补充到初始取样量的方法,较好地解决了问题,在样品处理过程中,以稀酸溶解过滤除去重晶石中的干扰组分,消除了锶、铅等元素的干扰,提高了XRF法的准确度。
本方法在样品灰化后直接熔片即可进行XRF测定,而ICP-OES法在样品灰化后需要碱熔、过滤、酸溶解钡、上机测定,分析周期较长。总体上,较容量法、重量法、ICP-OES法的干扰少、分析流程短,提高了分析测试效率。
-
表 1 奥陶系—志留系界线碳质泥岩Re-Os同位素结果
Table 1 Re-Os isotope data of carbonaceous mudstone in the Ordovician—Silurian boundary
碳质泥岩样品编号 采样深度
(m)Re含量(ng/g) Os含量(ng/g) 187Re/188Os 187Os/188Os (187Os/188Os)i 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 16BZ-11 1120.15 43.76 0.32 0.7166 0.0054 440.9 4.5 3.950 0.008 0.6846 16BZ-16 1118.25 22.17 0.16 0.6084 0.0046 227.6 2.3 2.394 0.004 0.7058 16BZ-17 1117.95 101.3 0.7 1.497 0.011 509.6 5.2 4.437 0.007 0.6563 16BZ-18 1117.65 49.12 0.36 0.8658 0.0065 399.7 4.0 3.668 0.006 0.7027 16BZ-19 1117.35 12.21 0.09 0.3854 0.0029 192.0 1.9 2.104 0.004 0.6798 16BZ-20 1117.05 12.36 0.09 0.3596 0.0027 212.2 2.1 2.281 0.004 0.7061 16BZ-21 1116.75 11.18 0.08 0.4773 0.0036 136.4 1.4 1.725 0.003 0.7125 16BZ-22 1116.45 11.65 0.09 0.4048 0.0031 172.1 1.7 1.979 0.003 0.7026 16BZ-23 1116.15 3.315 0.196 0.1558 0.0012 122.2 7.3 1.604 0.003 0.6965 16BZ-24 1115.85 3.848 0.028 0.1323 0.0010 174.3 1.8 1.988 0.004 0.6947 16BZ-25 1115.55 4.350 0.032 0.1764 0.0013 144.1 1.5 1.758 0.003 0.6884 注:(187Os/188Os)(i)=187Os/188Os-(et×10-5×1.666-1)×187Re/188Os;t=443.7Ma(据Jenkins et al., 2002[30])。 -
Tucker R D, Krogh T E, Ross R J, et al.Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain[J].Earth and Planetary Science Letters, 1990, 100(1-3):51-58. doi: 10.1016/0012-821X(90)90175-W
Ghavidel-Syooki M, Hassanzadeh J, Vecoli M.Paly-nology and isotope geochronology of the Upper Ordovician-Silurian successions (Ghelli and Soltan Maidan Formations) in the Khoshyeilagh area, Eastern Alborz Range, Northern Iran; Stratigraphic and palaeogeographic implications[J].Review of Palaeobotany & Palynology, 2011, 164(3-4):251-271.
Cramer B D, Condon D J, Soderlund U, et al.U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the 'Big Crisis'[J].Geological Society of America Bulletin, 2012, 124(11-12):1841-1857. doi: 10.1130/B30642.1
Cooper M R, Crowley Q, Rushton A W A.New age constraints for the Ordovician Tyrone volcanic group, Northern Ireland[J].Journal of the Geological Society, 2008, 165(1):1-19. doi: 10.1144/0016-76492007-072
胡艳华, 刘健, 周明忠, 等.奥陶纪与志留纪钾质斑脱岩研究评述[J].地球化学, 2009, 38(4):393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010 Hu Y H, Liu J, Zhou M Z, et al.An overview of Ordovician and Silurian K-bentonites[J].Geochimica, 2009, 38(4):393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010
Hu Y H, Zhou J B, Song B, et al.SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J].Science in China Series D (Earth Sciences), 2008, 51(4):493-498. doi: 10.1007/s11430-008-0028-1
Li Y F, Zhang T W, Shao D Y, et al.New U-Pb zircon age and carbon isotope records from the Lower Silurian Longmaxi Formation on the Yangtze Platform, South China:Implications for stratigraphic correlation and environmental change[J].Chemical Geology, 2019, 509:249-260. doi: 10.1016/j.chemgeo.2019.02.003
罗华, 何仁亮, 潘龙克, 等.湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].资源环境与工程, 2016, 30(4):547-550. http://d.old.wanfangdata.com.cn/Periodical/hbdk201604001 Luo H, He R L, Pan L K, et al.LA-ICP-MS zircon U-Pb age and its significance of Late Ordovician-Early Silurian Longmaxi bentonite[J].Resources Environment & Engineering, 2016, 30(4):547-550. http://d.old.wanfangdata.com.cn/Periodical/hbdk201604001
谢尚克, 汪正江, 王剑, 等.湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄[J].沉积与特提斯地质, 2012, 32(4):65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010 Xie S K, Wang Z J, Wang J, et al.LA-ICP-MS zircon U-Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping Section, Taoyuan, Hunan[J].Sedimentary Geology and Tethyan Geology, 2012, 32(4):65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010
熊国庆, 王剑, 李园园, 等.大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义[J].沉积与特提斯地质, 2017, 37(2):46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006 Xiong G Q, Wang J, Li Y Y, et al.Zircon U-Pb dating and geological significance of the bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains[J].Sedimentary Geology and Tethyan Geology, 2017, 37(2):46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006
熊国庆, 王剑, 李园园, 等.南大巴山东段上奥陶统五峰组-下志留统龙马溪组钾质斑脱岩锆石U-Pb年龄及其构造意义[J].地质学报, 2019, 93(4):843-864. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201904007 Xiong G Q, Wang J, Li Y Y, et al.Zircon U-Pb dating of K-bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the eastern section of South Dabashan and its tectonic sigification[J].Acta Geologica Sinica, 2019, 93(4):843-864. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201904007
Ge X Y, Mou C L, Wang C S, et al.Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance[J].Geological Journal, 2019, 54(1):514-528. doi: 10.1002/gj.3201
卢斌, 邱振, 周杰, 等.四川盆地及周缘五峰组-龙马溪组钾质斑脱岩特征及其地质意义[J].地质科学, 2017, 52(1):186-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201701013 Lu B, Qiu Z, Zhou J, et al.The characteristics and Wufeng Formation and geological significance of the K-bentonite in Longmaxi Formation in Sichuan Basin and its peripheral areas[J].Chinese Journal of Geology, 2017, 52(1):186-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201701013
Yan D T, Chen D Z, Wang Q C, et al.Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1-2):32-39. doi: 10.1016/j.palaeo.2008.12.016
Wang K, Chatterton B D E, Wang Y.An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China:Implications for CO2 changes during the Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4):147-158. doi: 10.1016/S0031-0182(97)00046-1
Delabroye A, Munnecke A, Vecoli M, et al. Phytoplankton dynamics across the Ordovician/Silurian boundary at low palaeolatitudes:Correlations with carbon isotopic and glacial events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312(1-2):0-97.
Fan J, Peng P, Melchin M J.Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1-4):160-169. doi: 10.1016/j.palaeo.2009.03.007
Liu Y, Li C, Algeo T J, et al.Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463:180-191. doi: 10.1016/j.palaeo.2016.10.006
汪啸风, 柴之芳.奥陶系与志留系界线处生物绝灭事件及其与铱和碳同位素异常的关系[J].地质学报, 1989, 60(3):65-74. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198903006.htm Wang X F, Chai Z F.Terminal Ordovician mass extinction and its relationship to iridium and carbon isotope anomalies[J].Acta Geologica Sinica, 1989, 60(3):65-74. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198903006.htm
Chen X, Rong J Y, Charles E, et al.Late Ordovician to Earliest Silurian graptolite and brachiopod biozonation from the Yangtze Region, South China, with a global correlation[J].Geological Magazine, 2000, 137(6):623-650. doi: 10.1017/S0016756800004702
林家善, 刘建清, 冯伟明, 等.黔北下志留统龙马溪组烃源岩有机地球化学特征及其古环境意义[J].沉积与特提斯地质, 2014, 34(2):79-85. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201402012 Lin J S, Liu J Q, Feng W M, et al.Organic geochemical signatures and palaeo-environmental implications for the source rocks from the Lower Silurian Longmaxi Formation in Northern Guizhou[J].Sedimentary Geology and Tethyan Geology, 2014, 34(2):79-85. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201402012
王辰, 刘建朝, 张海东, 等.湘西花垣地区奥陶-志留系沉积岩稀土元素地球化学特征及地质意义[J].矿物岩石地球化学通报, 2017, 36(3):534-595. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201703018 Wang C, Liu J C, Zhang H D, et al.REE geochemical characteristics of Ordovician-Silurian sedimentary rocks in the Huayuan Area, Hunan Province and their geological significances[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3):534-595. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201703018
Yan D T, Chen D Z, Wang Q C, et al.Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J].Geology, 2010, 38(7):599-602. doi: 10.1130/G30961.1
Gong Q, Wang X, Zhao L, et al.Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction[J].Scientific Reports, 2017, 7(1):5304-5310. doi: 10.1038/s41598-017-05524-5
Jones D S, Martini A M, Fike D A, et al.A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia[J].Geology, 2017, 45(7):631-634. doi: 10.1130/G38940.1
Finlay A J, Sebly D, Gröcke D R.Tracking the Hirnantian glaciation using Os isotopes[J].Earth and Planetary Science Letters, 2010, 293(3-4):339-348. doi: 10.1016/j.epsl.2010.02.049
李超, 屈文俊, 王登红, 等.Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J].地球学报, 2014, 35(4):405-414. http://d.old.wanfangdata.com.cn/Periodical/dqxb201404005 Li C, Qu W J, Wang D H, et al.The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J].Acta Geoscientica Sinica, 2014, 35(4):405-414. http://d.old.wanfangdata.com.cn/Periodical/dqxb201404005
李欣尉, 杨显德, 李超, 等.蒸馏法富集纯化Os实验条件研究及其在负离子热电离质谱测量中的应用[J].岩矿测试, 2018, 37(4):102-110. doi: 10.15898/j.cnki.11-2131/td.201805020054 Li X W, Yang X D, Li C, et al.Study on the conditions for enrichment and purification of Os by microdistillation and its application in NTIMS measurements[J].Rock and Mineral Analysis, 2018, 37(4):102-110. doi: 10.15898/j.cnki.11-2131/td.201805020054
李超, 王登红, 周利敏, 等.湖南鲁塘石墨矿Re-Os同位素研究[J].岩矿测试, 2017, 36(3):297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050 Li C, Wang D H, Zhou L M, et al.Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J].Rock and Mineral Analysis, 2017, 36(3):297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050
Jenkins R J F, Acooper J, Compston W.Age and biostratigraphy of Early Cambrian tuffs from SE Australia and Southern China[J].Journal of the Geological Society, 2002, 159(6):645-658. doi: 10.1144/0016-764901-127
Lanphere M A, Churkin M, Eberlein G D.Radiometric age of the monograptus cyphus graptolite zone in Southeastern Alaska-An estimate of the age of the Ordovician-Silurian boundary[J].Geological Magazine, 1977, 114(1):15-24. doi: 10.1017/S0016756800043387
Fullager P D, Bottino M L.Radiometric age of the volcanics at Arisaig, Nova Scotia, and the Ordovician-Silurian boundary[J].Canadian Journal of Earth Sciencen, 1968, 5(2):311-317. doi: 10.1139/e68-031
Jaffe L A, Peucker-Ehrenbrink B, Petsch S T.Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J].Earth and Planetary Science Letters, 2002, 198(3-4):339-353. doi: 10.1016/S0012-821X(02)00526-5
Creaser R A, Sannigrahi P, Chacko T, et al.Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks:A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J].Geochimica et Cosmochimica Acta, 2002, 66(19):3441-3452. doi: 10.1016/S0016-7037(02)00939-0
李超, 屈文俊, 王登红, 等.富有机质地质样品Re-Os同位素体系研究进展[J].岩石矿物学杂志, 2010, 29(4):421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009 Li C, Qu W J, Wang D H, et al.Advances in the study of the Re-Os isotopic system of organic-rich samples[J].Acta Petrologica et Mineralogica, 2010, 29(4):421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009
Kendall B, Creaser R A, Sebly D.187Re-187Os Geochronology of Precambrian Organic-rich Sedimentary Rocks[M].London:Geological Society, 2009, 326:85-107.
徐伦勋, 肖传桃, 龚文平, 等.论扬子地区上奥陶统五峰组观音桥段的深海成因[J].地质学报, 2004, 78(6):726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002 Xu L X, Xiao C T, Gong W P, et al.A study on the deep-sea sediment of the Guanyinqiao Member of the Upper Ordovician Wufeng Formation in the Yangtze Area[J].Acta Geologica Sinica, 2004, 78(6):726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002
王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制[J].石油学报, 2015, 36(8):915-925. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201508003.htm Wang T, Yang K M, Xiong L, et al.Shale sequence stratigraphy of Wufeng-Longmaxi Formation in Southern Sichuan and their control on reservoirs[J].Acta Petrolei Sinica, 2015, 36(8):915-925. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201508003.htm
Cohen A S.The rhenium-osmium isotope system:Applications to geochronological and palaeoenviron-mental problems[J].Journal of the Geological Society, 2004, 161(4):729-734. doi: 10.1144/0016-764903-084
Levasseur S, Birck J, Allegre C J.Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater[J].Science, 1998, 282(5387):272-274. doi: 10.1126/science.282.5387.272
赵鸿, 李超, 江小均, 等.浙江长兴"金钉子"灰岩Re-Os富集机制研究[J].地质学报, 2015, 89(10):1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006 Zhao H, Li C, Jiang X J, et al.Direct radiometric dating of limestone from Changxing Permian-Triassic Boundary using the Re-Os geochronometer[J].Acta Geologica Sinica, 2015, 89(10):1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006
Trotter J A, Williams I S, Barnes C R, et al.Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J].Science, 2008, 321(5888):550-554. doi: 10.1126/science.1155814
Finnegan S, Bergmann K, Eiler J M, et al.The magnitude and duration of Late Ordovician-Early Silurian glaciation[J].Science, 2011, 331(6019):903-906. doi: 10.1126/science.1200803
Finnegan S, Heim N A, Peters S E, et al.Climate change and the selective signature of the Late Ordovician mass extinction[J].Proceedings of the National Academy of Science, 2012, 109(18):6829-6834. doi: 10.1073/pnas.1117039109
Zhou L, Algeo T J, Shen J, et al.Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420:223-234. doi: 10.1016/j.palaeo.2014.12.012
Cramer B D, Saltzman M R.Sequestration of 12C in the deep ocean during the Early Wenlock (Silurian) positive carbon isotope excursion[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4):333-349. doi: 10.1016/j.palaeo.2005.01.009
Saltzman M R, Young S A.Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from Western Laurentia[J].Geology, 2005, 33(2):109-112. doi: 10.1130/G21219.1
Young S A, Saltzman M R, Bergström S A.Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in Eastern and Central North America:Regional expression of a perturbation of the global carbon cycle[J].Palaeogeography, Palaeoceanography, Palaeoclimatology, 2005, 222(1-2):53-76. doi: 10.1016/j.palaeo.2005.03.008
Sheehan P M.The Late Ordovician mass extinction[J].Annual Reviews of Earth and Planetary Sciences, 2001, 29(29):331-364. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3345012
Rasmussen C M Ø, Harper D A T.Interrogation of distributional data for the End Ordovician crisis interval:Where did disaster strike?[J].Geological Journal, 2011, 46(5):478-500.
Luo G, Algeo T J, Zhan R, et al.Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448:339-348. doi: 10.1016/j.palaeo.2015.07.018
Melchin M J, Holmden C.Carbon isotope chemostra-tigraphy of the Llandovery in Arctic Canada:Implications for global correlation and sea-level change[J].GFF, 2006, 128(2):173-180. doi: 10.1080/11035890601282173
Underwood C J, Crowley S F, Marshall J D, et al.High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob's Linn, Scotland) and its global correlation[J].Journal of the Geological Society, 1997, 154(4):709-718. doi: 10.1144/gsjgs.154.4.0709
Kaljo D, Martma T, Mannik P, et al.Implications of Gondwana glaciations in the Baltic Late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity[J].Bulletin de la Société Géologique de France, 2003, 174(1):59-66. doi: 10.2113/174.1.59
Vecoli M, Riboulleau A, Versteegh G J M.Palynology, organic geochemistry and carbon isotope analysis of a Latest Ordovician through Silurian clastic succession from borehole Tt1, Ghadamis Basin, Southern Tunisia, North Africa:Palaeoenvironmental interpretation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3-4):378-394. doi: 10.1016/j.palaeo.2008.05.015
Munnecke A, Samtleben C, Bickert T.The Ireviken Event in the Lower Silurian of Gotland, Swede-relation to similar Palaeozoic and Proterozoic events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(1):99-124.
Cramer B D, Brett C E, Melchin M J, et al.Revised correlation of the Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy[J].Lethaia, 2011, 44(2):185-202. doi: 10.1111/j.1502-3931.2010.00234.x
-
期刊类型引用(5)
1. 符招弟,张晓娟,杨林. 伟晶岩型锂矿石中锂的化学物相分析方法研究. 岩矿测试. 2024(03): 432-439 . 本站查看
2. 彭晶晶,林锴. 锂矿成矿规律研究的知识图谱分析. 中国矿业. 2024(09): 228-235 . 百度学术
3. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
4. 郭晓剑,胡欢,刘亦晴,梁雁茹. 基于CiteSpace的我国绿色矿山研究可视化分析. 黄金科学技术. 2020(02): 203-212 . 百度学术
5. 叶亚康,周家云,周雄. 川西塔公松林口岩体LA-ICP-MS锆石U -Pb年龄与地球化学特征. 岩矿测试. 2020(06): 921-933 . 本站查看
其他类型引用(4)