• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素

乔磊, 叶永盛, 李鹰, 付永强, 周建光, 俞晓峰

乔磊, 叶永盛, 李鹰, 付永强, 周建光, 俞晓峰. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素[J]. 岩矿测试, 2020, 39(1): 99-107. DOI: 10.15898/j.cnki.11-2131/td.201907170107
引用本文: 乔磊, 叶永盛, 李鹰, 付永强, 周建光, 俞晓峰. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素[J]. 岩矿测试, 2020, 39(1): 99-107. DOI: 10.15898/j.cnki.11-2131/td.201907170107
QIAO Lei, YE Yong-sheng, LI Ying, FU Yong-qiang, ZHOU Jian-guang, YU Xiao-feng. Determination of Heavy Elements in Soils by Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry with Direct Solid Injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107. DOI: 10.15898/j.cnki.11-2131/td.201907170107
Citation: QIAO Lei, YE Yong-sheng, LI Ying, FU Yong-qiang, ZHOU Jian-guang, YU Xiao-feng. Determination of Heavy Elements in Soils by Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry with Direct Solid Injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107. DOI: 10.15898/j.cnki.11-2131/td.201907170107

固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素

基金项目: 

杭州市重大科技创新项目“基于质谱技术的全自动重金属智能分析系统研制” 20182011A25

国家重点研发计划项目“重大科学仪器设备开发” 2017YFF0108203

国家重点研发计划项目“重大科学仪器设备开发”(2017YFF0108203);杭州市重大科技创新项目“基于质谱技术的全自动重金属智能分析系统研制”(20182011A25)

详细信息
    作者简介:

    乔磊, 硕士, 应用工程师, 主要从事质谱应用技术开发。E-mail:qiaolei0023@163.com

  • 中图分类号: O657.63;S151.93

Determination of Heavy Elements in Soils by Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry with Direct Solid Injection

  • 摘要: 为解决高基质土壤样品中痕量重金属元素检测前处理操作繁琐、样品易二次污染或损失等问题,本文建立了采用固体直接进样-电热蒸发-车载电感耦合等离子体质谱定量分析环境现场土壤样品中Cr、Cu、Zn、As、Cd、Hg和Pb元素的分析方法。该方法采用高温电热蒸发石墨炉作为原子化器,样品称量后经梯度升温选择性蒸发,再结合双通道伴热传输石英管、两路氩气在线稀释、ICP-MS瞬时扫描、基体匹配外部校正等策略,有效解决了土壤直接进样过程中传输效率低、基体效应大的问题。在优化的仪器条件下,按照实验方法称取20mg土壤标准物质GBW07401、GBW07406、GBW07407、GBW07430和GBW07456建立外部校正曲线,样品中7种元素的标准曲线线性相关系数≥0.999;并按照实验方法测定了杭州市滨江区两处田间土壤样品中Cr、Cu、Zn、As、Cd、Hg和Pb,相对标准偏差(RSD) < 7%,相对误差 < 5%,检出限为1.2~32.0ng/g,回收率为91.0%~113.0%。该方法是一种有实用价值的现场样品分析技术,适合现场中大批量土壤样品的分析监测。
    要点

    (1) 建立了土壤固体粉末无需消解直接进样车载ETV-ICP-MS多元素分析方法。

    (2) 解决了样品传输效率低、基体效应大等问题。

    (3) 实现了环境现场土壤中重金属元素在线检测。

    HIGHLIGHTS

    (1) A multi-element analysis method for in-vehicle ETV-ICP-MS for direct injection of soil solid powder without digestion was established.

    (2) The problem of low sample transmission efficiency and large matrix effect was solved.

    (3) On-line detection of heavy metal elements in soil at the environmental site was realized.

  • 铌钽是稀有金属中的重要品种,在钢铁工业、超导材料、电子工业、医疗领域及铸造行业等领域有较广泛的应用,是国家战略资源中极为重要的部分。因此,铌钽矿的开发越来越受到重视[1]。我国是铌、钽矿藏较富足的国家[2-3],但铌钽矿资源矿物分布粒度细,且矿石含量较低,要求选矿处理量大,所以铌钽选矿工艺普遍存在流程复杂、回收率低等特点,同时伴生可综合利用的锂、铍、长石等资源[4-6]。所以,化学分析数据对判定矿物在分选流程中的去向就十分重要,而标准物质是对分析数据准确性的考察指标之一。但在铌钽选矿过程中常因化学分析结果的时间比较长、没有高品位的精矿标准物质、结果准确度不高等原因,不能满足量值溯源、传递及高精度、高准确度的质量控制要求,严重影响到了选矿工艺的设计。所以有必要研制铌钽精矿的相关标准物质,来指导选冶试验工艺流程的合理性,提高矿物的综合利用率[7-8]

    我国常用的铌、钽元素矿石标准物质[9]GBW07185、GBW07152、GBW07153、GBW07154、GBW07155、GBW07184、GBW07185等,它们的铌钽元素(Nb2O5+Ta2O5)含量基本在200×10-6以下,只有GBW07155和GBW07185的铌钽元素(Nb2O5+Ta2O5)含量分别在1130×10-6和15400×10-6,而对于选厂和冶炼厂的铌钽中间产品及最终产品来说,Nb2O5+Ta2O5的含量大于10%,甚至达到60%以上,没有相对应的铌钽标准物质对分析过程进行监控。可见,已有的铌钽矿石标准物质只适用于边界品位、工业品位的铌钽矿石分析,无法满足选冶试验样品中铌钽精矿样品分析的要求。铌铁标准物质(DH2805-铌铁,组分含量Ta 0.35×10-2,Nb 65.40×10-2;ECRM576-1-铌铁,组分含量Ta 0.306×10-2,Nb 43.90×10-2;YSBC18606-08-铌铁,组分含量Ta 0.84×10-2,Nb 66.24×10-2)中的铌高钽低,铌钽含量差距太大,且合金类标准物质,其基体与组分和铌钽矿石均不匹配,不适合在铌钽精矿分析过程中使用。因此,铌钽精矿标准物质的研制,不仅可为铌钽矿资源的开发中得到的精矿品位数据提供可靠的质量保证,也将填补我国铌钽精矿标准物质的空白;同时与原有的铌钽矿标准物质形成一个完整的铌钽矿含量系列标准物质,能够满足铌钽矿勘查和选冶对标准物质的需求。

    本文研制了4个铌钽矿化学成分标准物质,采用气流粉碎及高铝球磨细碎的两次破碎方法,保证满足标准物质粒度的要求,混合均匀后对全部定值元素进行均匀性和稳定性检验,选择8家具有资质的实验室,采取经典分析方法与现代仪器分析技术相结合的方式对该标准物质联合定值,依照JJF 1343—2012和一级标准物质技术规范给出了12项组分(包括主量、痕量元素)的标准值和不确定度。

    系列样品的选采主要考虑:①采样区是该矿种的主要矿床成因类型和工业类型,矿石的组成具有代表性;②矿石主成分的含量能满足含量梯度的要求。

    根据国内外铌钽矿资源的情况,结合铌钽矿产出的类型及性质,选取江西宜春铌钽矿区和尼日利亚宾盖地区铌钽矿为采集地点。江西宜春铌钽矿[10]是以铌钽锂铍为主要成分的的特大型稀有多金属矿床,也是目前我国产生最大的铌钽采选企业及铌钽原料生产基地;尼日利亚宾盖铌钽矿[11]为典型的沉积型砂矿。为了避免选矿的药剂污染及采集样品的稳定性,结合国内外的实际情况,确定了4个品位级别的候选物(编号为NTJK1、NTJK2、NTJK3和NTJK4),宜春微晶岩型(3个)和尼日利亚砂矿类型(1个)两种类型经过重选加工后的不同含量段的4个铌钽精矿样品。对4个铌钽精矿标准物质候选物进行化学分析、光薄片鉴定和X射线衍射分析,其矿物组成和基本特征见表 1

    表  1  采集铌钽精矿候选物的基本特征
    Table  1.  Basic characteristics of niobium-tantalum concentrate candidates
    样品编号 Ta2O5含量(×10-2) Nb2O5含量(×10-2) 采样地及采样量 主要矿物组成
    NTJK-1 5.72 4.17 江西宜春,80 kg 长石30%,黄玉35%,钽铌锰矿15%,石英10%,锡石3%,萤石2%
    NTJK-2 12.07 8.48 江西宜春,80 kg 黄玉20%,钽铌锰矿30%~35%,锡石5%,细晶石6%~8%,磁铁矿1%,长石10%,石英2%
    NTJK-3 21.02 19.77 江西宜春,80 kg (钽铌+铌钽+锡钽)锰矿60%,黄玉10%,细晶石15%,锡石10%,磁铁矿1%
    NTJK-4 5.81 47.88 尼日利亚,80 kg 铌钽铁矿75%,钛铁矿+铁金红石15%,赤铁矿5%,锡石3%,角闪石3%,钍石2%
    下载: 导出CSV 
    | 显示表格

    在避免污染的前提下,将4个铌钽精矿候选物按照铌钽含量由低到高分别进行晾晒,混合后于105℃烘24 h,然后进行样品的细碎和混匀。加工后的样品存于聚乙烯塑料桶内密封保存,每桶的样品质量约25 kg。分装样品的最小单元,全部采用国际上推荐的中高密度的100 mL聚乙烯瓶,包装单位为100 g/瓶。样品加工流程见图 1

    图  1  样品的加工流程
    Figure  1.  Processing flow of sample

    铌钽矿物颗粒硬度大且具有脆性,不易粉碎,尤其对于铌钽矿物颗粒富集的精矿,因此,在本系列标准物质加工过程中采用两次粉碎的方法。首先采用气流粉碎,在对气流粉碎后的样品全部进行高铝球磨机细磨,同时时刻注意检查样品粒度,要求74 μm筛通过率大于98%。气流粉碎特别适用于硬度大、脆性大的样品,且气流粉碎技术在矿石加工和标准物质制备加工中已有应用[12-13],而在铌钽精矿标准物质的制备中首次采用。

    混合均匀后的4个铌钽精矿样品经激光粒度分析仪(BT-9300S型)进行分析,检测结果(图 2)表明:4个铌钽精矿标准物质的颗粒粒径主要集中在2~50.2 μm,占粒径分布的65.10%~84.85%,其中NTJK-3样品所占比例最小,为65.10%;<50.2 μm的粒径分别占到97.33%、94.97%、99.44%和98.07%,NTJK-3样品所占比例最大;NTJK-4样品中>74 μm的颗粒比例最大,为0.98%。4个铌钽精矿标准物质颗粒的粒径<74 μm的含量均达到99%以上,符合国家一级标准物质技术规范的要求。

    图  2  样品粒度分布图
    Figure  2.  Grain distributions of samples

    样品的均匀性是研制标准物质的基础,是标准物质物质必须具备的特性,也是衡量标准物质加工质量的非常重要的因素。检验方法为:从分装的最小包装单元中随机抽取50个子样,每个样品进行双份测试。采用酸溶ICP-OES/MS法(取样量0.100 g)对定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th等9个元素进行了均匀性检验。采用碱熔ICP-OES/MS法(取样量0.100 g)对SiO2、Zr、Hf进行了均匀性检验。根据测试值的相对标准偏差(RSD)和瓶间与瓶内方差检验的F值结果,对标准物质候选物的均匀性作出评价[14-15],均匀性检验结果见表 2

    表  2  候选物均匀性检验结果
    Table  2.  Homogeneity tests of niobium-tantalum concentrate candidates
    元素 NTJK-1 NTJK-2 NTJK-3 NTJK-4
    含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F
    Nb2O5 4.07 1.15 1.43 8.54 1.85 1.41 20.94 3.74 1.58 49.01 1.60 1.46
    Ta2O5 5.39 1.52 1.41 10.80 1.51 0.79 19.58 2.92 1.46 5.45 1.37 1.51
    SiO2 26.75 1.37 1.49 20.61 0.41 0.48 10.81 0.93 0.99 2.03 3.67 1.12
    Fe2O3 3.47 1.73 1.32 4.47 1.39 1.00 5.81 1.18 1.23 23.89 1.60 1.36
    TiO2 0.068 6.12 1.49 0.12 4.01 0.85 1.43 1.17 0.92 10.41 0.97 1.24
    MnO 1.94 1.15 0.83 3.55 3.08 0.91 5.63 2.12 1.03 2.46 3.27 0.87
    P2O5 0.37 1.51 1.50 0.26 5.05 0.26 0.26 4.61 1.27 0.090 1.56 0.98
    Zr* 897.75 3.55 1.47 1549.44 1.52 1.14 1812.26 1.46 0.77 2733.70 1.75 0.32
    Hf* 159.72 3.16 0.43 303.87 5.11 1.50 294.38 2.62 1.52 238.87 4.06 1.41
    U* 957.05 3.42 1.52 2168.39 4.76 1.54 2955.06 2.95 1.51 340.01 4.19 1.59
    Th* 98.94 0.69 1.55 192.83 2.91 0.94 377.83 3.50 1.18 1357.67 2.33 0.78
    W* 532.68 4.20 1.59 1127.25 4.91 1.49 2283.44 2.89 1.39 2445.83 3.30 0.66
    注:表中带“*”成分的测定平均值单位为10-6,其他成分的测定平均值单位为10-2
    下载: 导出CSV 
    | 显示表格

    表 2中4个候选物的检验结果可以看出,大部分主量元素的相对标准偏差小于3%,微量元素的相对标准偏差小于5%,说明12个指标的分析方法精密度较高。经单因素方差检验,4个标准物质候选物中12项元素的F实测值均小于临界值F0.05(24,25)=1.76,说明组内和组间分析结果无明显差异,综合判断样品的均匀性良好。

    标准物质在运输过程中不可避免地会发生颠震,铌钽精矿中部分矿物比重较大,运输过程中的颠震是否会对其造成影响而出现不均匀和不稳定的现象,值得关注。每个铌钽精矿标准物质候选物随机抽取2个最小包装单元的样品分别在50℃和-18℃温度条件下保存,常温下振荡器上振荡模拟运输过程中的颠簸情况,在颠振48 h后取样分析,试验后的样品每个取2份进行分析。对12个定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th、SiO2、Zr、Hf进行了测试,分析方法同均匀性检验。采用T检验法验证标准物质的稳定性,以Nb2O5和Ta2O5为例,分析结果见表 3,本系列标准物质在进行了48 h的颠振后,T检测值均小于T临界值,样品特性量值未发生显著变化,这说明本系列标准物质候选物的短期稳定性良好。

    表  3  ICP-OES法测定Nb2O5和Ta2O5短期稳定性的结果
    Table  3.  Short-term stability test results of Nb2O5 and Ta2O5 by ICP-OES
    样品编号 检验方式 取样部位 Nb2O5 Ta2O5 T临界值
    平均测定值(×10-2) T检测值 平均测定值(×10-2) T检测值
    NTJK-1 机器振荡 上部 4.11 0.9 5.47 0.7 2.3
    下部 4.13 5.46
    正常存放 上部 4.22 1.0 5.40 0.8
    下部 4.21 5.36
    NTJK-2 机器振荡 上部 8.52 2.0 11.28 1.1 2.3
    下部 8.62 11.41
    正常存放 上部 8.82 1.9 11.37 1.3
    下部 8.83 11.36
    NTJK-3 机器振荡 上部 21.04 1.2 19.26 1.2 2.3
    下部 20.98 19.56
    正常存放 上部 21.38 1.5 20.30 1.3
    下部 21.33 20.31
    NTJK-4 机器振荡 上部 48.92 1.3 5.45 1.0 2.3
    下部 49.15 5.47
    正常存放 上部 54.14 1.2 5.71 0.7
    下部 54.12 5.72
    下载: 导出CSV 
    | 显示表格

    本次研制的系列铌钽精矿标准物质的长期稳定性按照“先密后疏”原则在第0、1、4、12、18、36、48个月时定期取样分析,每个铌钽精矿标准物质随机抽取2瓶样品进行分析,每瓶样品对12个定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th、SiO2、Zr、Hf进行了7次测试,7次不同时间分析结果的平均值均在正常的分析误差和标准值的不确定度范围内, 无明显偏向性变化, 表明本系列标准物质候选物的长期稳定性良好。

    标准物质的定值分析测试是标准物质研制的重要环节之一。铌钽精矿标准物质元素定值是按照国家一级标准物质技术规范,采用多个实验室、多种分析方法合作定值。邀请了经过计量认证、铌钽元素测试水平较高的检测机构参加样品测试,制定了分析测试细则,采用两套以上原理独立的方法进行检测,以提高定值的质量。每种方法对每一样品的每一元素至少报出4个数据,定值元素不少于8组数据。样品各定值元素的测定采用多种不同原理的分析方法分别进行分析,各元素的分析方法见表 4

    表  4  样品各定值元素的分析方法
    Table  4.  Analytical methods of certified value elements in samples
    定值元素 分析方法
    Nb2O5和Ta2O5 碱熔-纸上层析重量法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定
    Fe2O3 磺基水杨酸比色法;混合酸溶ICP-OES测定
    TiO2 二氨替比林甲烷比色法;混合酸溶ICP-OES测定
    WO3 硫氰酸盐比色法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定
    SiO2 动物胶凝聚重量法;硅钼蓝比色法;混合碱熔ICP-OES测定
    U3O8 钒酸铵容量法;混合酸溶ICP-OES测定
    下载: 导出CSV 
    | 显示表格

    以各单位提供的各元素平均值数据为统计单元,用Grubbs准则剔除离群数据,共收集8家实验室466组平均值数据,剔除2组数据,占总数的0.43%。用夏皮罗-威尔克法(Shapiro-Wilk)进行正态检验。本次研制的4个铌钽精矿标准物质正态检验值W均大于置信概率95%的列表值,定值测试数据均呈正态分布或近似正态分布。

    按照《标准物质定值的通用原则及统计学原理》(JJF1343—2012)的要求,当数据为正态分布或近似正态分布时,以算术平均值为最佳估计值,当数据集属偏态分布时以中位值为最佳估计值。本次研制的4个铌钽精矿标准物质平均值全部为正态分布,以算术平均值为最佳估计值,计算得到认定值和不确定度。

    化学成分测量不确定度来源较多,其不确定度评定较为困难,对于地质标准物质不确定评定的表达也不尽统一[16-17]。本次铌钽精矿标准物质在研制过程中,不确定度的评定采用JJF1343—2012推荐的标准值的不确定度评定方法,各元素的不确定度主要由其稳定性不确定度(us)、均匀性不确定度(ubb)和定值不确定度(uchar)三部分构成[18-19]。合成标准不确定度(uCRM)为:

    $ u{_{{\text{CRM}}}} = \sqrt {u_{\text{s}}^2 + u_{{\text{bb}}}^2 + u_{{\text{char}}}^2} $

    使用扩展不确定度UCRM=k×uCRM表示最终不确定度的值,因子k取2,对应的置信水平大约为95%,不确定度的数字修约采用只进不舍的原则。地质标准物质定值组分多,受工作量和分析方法精密度的限制,通常只选择有代表性的组分进行均匀性和稳定性检验[20-21]。本次标准物质的认定值和扩展不确定度列于表 5

    表  5  铌钽精矿标准物质的认定值及不确定度
    Table  5.  Certified values and expanded uncertainty of niobium-tantalum concentrates reference materials
    定值元素 认定值与扩展不确定度
    NTJK-1 NTJK-2 NTJK-3 NTJK-4
    MnO(×10-2) 1.84±0.065 3.59±0.094 5.82±0.158 2.47±0.124
    P2O5(×10-6) 3785±414.33 2839±455.71 2189±183.94 1002±114.49
    SiO2(×10-2) 27.88±0.542 21.60±0.586 10.99±0.7 2.12±0.282
    Fe2O3(×10-2) 3.67±0.307 4.75±0.254 6.34±0.473 24.51±0.343
    TiO2(×10-2) 0.075±0.013 0.13±0.016 1.45±0.041 11.28±0.485
    Ta2O5(×10-2) 5.72±0.05 12.07±0.10 21.02±0.16 5.81±0.08
    Nb2O5(×10-2) 4.17±0.225 8.48±0.267 19.77±0.550 47.88±0.968
    W(×10-6) 742±19.62 1540±101.34 2899±107.37 2997±97.46
    Th(×10-6) 103±16.10 170±12.11 383±26.91 1520±129.01
    U(×10-6) 984±42.50 2084±118.444 3322±290.60 334±12.48
    Zr(×10-6) 971±64.30 1624±88.53 1900±110.73 2898±189.44
    Hf(×10-6) 171±17.28 283±14.26 295±25.38 166±19.03
    下载: 导出CSV 
    | 显示表格

    为了保证本次标准物质研制工作的溯源性,采取了如下具体措施:①所使用的仪器设备及计量器具按国家计量部门有关规定进行检定或校准,确保量值准确、可靠,可溯源到国家标准。②用作校正曲线的标准溶液由标准物质或基准物质配制,可溯源到测量国际单位制。③保证分析试剂和水的高纯度,每次分析进行空白试验,减空白和背景校正正确、合理。④所选用的定值分析方法是经实践经验证明为成熟的、准确的、可靠的方法。另外,本次定值是由多家通过国家级计量认证,并多次参加了标准物质定值工作的单位以及多种经过实践经验的准确、可靠的方法联合测定,而且各单位和各方法都使用了国家一级标准物质(GBW07155和GBW07185)进行质量监控。

    本批标准物质研制成功后,先后送江西宜春铌钽矿选厂和河南洛阳钼业公司进行应用分析,两个应用单位根据各自的条件,采用例行分析方法对本批标准物质进行了验证分析,分析数据见表 6,结果表明本批标准物质定值准确、可靠。同时,本批标准物质在河南三门峡市卢氏七里沟和卢氏火炎沟等地区的铌钽矿选矿过程样品分析中进行应用,分析结果表明,铌钽选矿过程样品的分析数据满足选矿金属量平衡的需要,证明本批标准物质能够对分析过程发挥很好的监控作用。

    表  6  实际样品应用分析结果对照
    Table  6.  Comparison of analytical results of actual samples
    样品编号 Nb2O5分析结果(×10-2) Ta2O5分析结果(×10-2)
    宜春选厂 洛阳钼业 参考值 宜春选厂 洛阳钼业 参考值
    NTJK-1 4.23 4.19 4.17 5.64 5.74 5.72
    NTJK-2 8.49 8.36 8.48 12.25 12.04 12.07
    NTJK-3 20.06 19.96 19.77 20.87 20.93 21.02
    NTJK-4 48.09 47.97 47.88 5.72 5.87 5.81
    注:参考值为8家实验室测定数据统计分析后的算术平均值。
    下载: 导出CSV 
    | 显示表格

    研制的4个铌钽精矿标准物质,其主要成分Ta(Nb)2O5的含量为9.89%、20.55%、40.79%、53.69%,此系列标准物质多数成分含量呈梯度分布,定值成分12个,具有样品粒度均匀且分布范围窄、定值元素含量分布广泛的特点,形成了一个从粗精矿到精矿较为完整的含量体系,可以满足选冶和冶金试验各阶段流程样品对标准物质的需求。4个铌钽精矿标准物质在选冶试验流程样品和冶金过程样品中的应用良好,可以满足铌钽选矿与贸易、铌钽矿开发综合利用和冶金过程样品中对分析测试过程、仪器校正、方法验证等的要求,具有较好应用前景,解决了我国无铌钽精矿标准物质的问题。

    在铌钽精矿标准物质研制过程中,采用气流粉碎和高铝球磨两次粉碎的技术对样品进行粉碎,解决了铌钽精矿中矿物颗粒硬度高、细碎难度大的问题,其粒度分布可满足日常质量监控的需要,并经实验证实;所应用的两次细碎的粉碎方法可以为今后类似矿石标准物质的研制提供借鉴。

  • 图  1   石墨炉分析土壤样品加热程序

    Figure  1.   Heating procedure for graphite furnace analysis of soil samples

    图  2   石墨炉与ICP-MS连接示意图

    Figure  2.   Graphite furnace and ICP-MS connection diagram

    图  3   不同蒸发温度(a)和蒸发时间(b)对Cr元素影响

    Figure  3.   Effect of (a) the evaporation temperature and (b) time on Cd signal

    图  4   灰化和相应蒸发温度下Cd和Hg元素信号图

    Figure  4.   Signal diagrams of Cd and Hg at ashing and evaporation temperatures

    表  1   ETV-ICP-MS仪器工作参数

    Table  1   Parameters of ETV-ICP-MS

    ETV步骤 工作参数 ICP-MS 工作参数
    灰化 320℃:2s,保持30s; 功率 1550W
    升温步长 320~850℃:15s,保持5s;
    850~2000℃:10s,保持5s;
    2000~2700℃:10s,保持5s
    冷却气
    流量
    12L/min
    石墨管 热解图层石墨管 辅助气
    流量
    1L/min
    样品舟 热解图层石墨舟 稀释气b
    流量
    0.2L/min
    载气流量 0.6L/min 采样深度 5mm
    稀释气a流量
    (伴热管路传输)
    0.2L/min 采集方式 瞬时扫描
    下载: 导出CSV

    表  2   方法重复性、校准方程和检出限(n=6)

    Table  2   Method repeatability, correction equation and detection limit (n=6)

    元素 峰面积的RSD(%) 线性回归方程 相关系数 检出限
    (ng/g)
    GBW07401 GBW07406 GBW07407 GBW07430 GBW07456
    Cr 6.32 5, 49 3.59 6.44 5.44 y=1.21×104x+4.32×102 0.9993 32.0
    Cu 5.85 4.55 5.76 5.84 4.33 y=1.32×104x+3.43×102 0.9992 11.7
    Zn 5.73 6.32 5.03 3.85 4.21 y=1.67×104x+4.47×101 0.9991 23.0
    As 4.52 4.87 6.78 5.65 4.08 y=4.21×103x+6.22×102 0.9990 19.0
    Cd 3.43 5.31 6.80 4.74 4.87 y=3.22×103x+4.33×102 0.9998 2.0
    Hg 4.19 3.90 3.76 2.55 5.22 y=1.26×103x+3.29×102 0.9996 1.2
    Pb 4.83 3.32 6.51 5.69 4.60 y=2.22×104x+2.21×102 0.9993 11.0
    下载: 导出CSV

    表  3   土壤样品中重金属元素两种测试方法结果对比(n=3)

    Table  3   Analytical results of elements in soil sample determined by two methods

    元素 GBW07456 实际样品1 实际样品2
    认定值
    (μg/g)
    本法测量值
    (μg/g)
    相对误差
    (%)
    认定值
    (μg/g)
    本法测量值
    (μg/g)
    相对误差
    (%)
    认定值
    (μg/g)
    本法测量值
    (μg/g)
    相对误差
    (%)
    Cr 92 94.2 2.39 45.3 46.7 3.09 36.7 38.0 3.54
    Cu 54 52.8 -2.22 56.7 55.3 -2.47 87 86.3 -0.80
    Zn 127 124 -2.36 143 138 -3.50 221 229 3.62
    Cd 0.590 0.577 -2.20 0.117 0.120 2.56 0.086 0.090 4.65
    Hg 0.116 0.118 1.72 0.032 0.033 3.13 0.051 0.053 3.92
    As 13.3 13.6 2.26 17.7 18.2 2.82 33 34.1 3.33
    Pb 41 42.1 2.68 54 56.3 4.26 187 195 4.28
    下载: 导出CSV
  • Legret M, Pagotto C.Heavy metal deposition and soil pollution along two major rural highways[J]. Environmental Technology, 2006, 27(3):247-254. doi: 10.1080/09593332708618641

    蔡美芳, 李开明, 谢丹平, 等.我国耕地土壤重金属污染现状与防治对策研究[J].环境科学与技术, 2014, 37(2):223-230. http://www.cqvip.com/QK/90776X/2014S2/70747583504849528350485254.html

    Cai M F, Li K M, Xie D P, et al.The status and protection strategy of farmland soils polluted by heavy metals[J].Environmental Science & Technology, 2014, 37(2):223-230. http://www.cqvip.com/QK/90776X/2014S2/70747583504849528350485254.html

    骆永明.中国土壤环境污染态势及预防、控制和修复策略[J].环境污染与防治, 2009, 31(12):27-31. doi: 10.3969/j.issn.1001-3865.2009.12.021

    Luo Y M.Trends in soil environmental pollution and the prevention-controlling-remediation strategies in China[J].Environmental Pollution and Prevention, 2009, 31(12):27-31. doi: 10.3969/j.issn.1001-3865.2009.12.021

    王玉军, 欧名豪.徐州农田土壤养分和重金属含量与分布研究[J].土壤学报, 2017, 54(6):128-140. http://d.old.wanfangdata.com.cn/Periodical/trxb201706013

    Wang Y J, Ou M H.Contents and distribution of soil nutrients and heavy metal elements in farmlands of Xuzhou[J].Acta Pedologica Sinica, 2017, 54(6):128-140. http://d.old.wanfangdata.com.cn/Periodical/trxb201706013

    Rahman M U, Kazi T G, Shaikh H, et al.Fractionation of manganese in soil samples collected from the Lakhra Coal Field in Pakistan using two modes of atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(6):258-263. https://www.researchgate.net/publication/6945020_Application_of_leaching_tests_for_toxicity_evaluation_of_coal_fly_ash

    李小莉, 张勤.粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J].冶金分析, 2013, 33(7):35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

    Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

    殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001

    Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J].Metallurgical Analysis, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001

    凤海元, 时晓露, 黄勤.微波消解-氢化物发生原子荧光光谱法测定茶园土壤中的铅[J].岩矿测试, 2013, 32(1):53-57. doi: 10.3969/j.issn.0254-5357.2013.01.010

    Feng H Y, Shi X L, Huang Q.Determination of lead in tea garden soil by hydride generation-atomic fluorescence spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2013, 32(1):53-57. doi: 10.3969/j.issn.0254-5357.2013.01.010

    李晋荣, 党晋华, 宋姗娟, 等.双道原子荧光光谱法测定土壤中汞[J].中国无机分析化学, 2017, 7(3):1-3. doi: 10.3969/j.issn.2095-1035.2017.03.001

    Li J R, Dang J H, Song S J, et al.Determination of mercury in soil by double-channel atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3):1-3. doi: 10.3969/j.issn.2095-1035.2017.03.001

    何锦强.原子吸收光谱法测定土壤重金属含量实验[J].能源与环境, 2018, 147(2):87-88. doi: 10.3969/j.issn.1672-9064.2018.02.042

    He J Q.Determination of heavy metal contents in soil by atomic absorption spectrometry[J].Energy and Environment, 2018, 147(2):87-88. doi: 10.3969/j.issn.1672-9064.2018.02.042

    邓琴, 吴迪, 秦樊鑫, 等.岩溶铅锌矿区土壤重金属污染特征[J].中国岩溶, 2017, 36(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/zgyr201702013

    Deng Q, Wu D, Qin F X, et al.Pollution characteristics of heavy metals in soil of lead-zinc mining in karst areas[J].Carsologica Sinica, 2017, 36(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/zgyr201702013

    吴峥, 熊英, 王龙山.自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋[J].岩矿测试, 2015, 34(5):533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

    Wu Z, Xiong Y, Wang L S.Determination of As, Sb and Bi in soil and stream sediment by a self developed hydride generation system coupled with inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

    何恬叶, 张颖红, 胡子文.微波消解ICP-OES法测定土壤样品中22种元素[J].分析试验室, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018

    He T Y, Zhang Y H, Hu Z W.Determination of 22 elements in soil by ICP-OES with microwave digestion[J].Chinese Journal of Analysis Laboratory, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018

    乐淑葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J].中国无机分析化学, 2015, 5(3):16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005

    Le S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005

    Ohno T, Muramatsu Y, Shikamori Y, et al.Determination of ultratrace 129I in soil samples by triple quadrupole ICP-MS and its application to Fukushima soil samples[J].Journal of Analytical Atomic Spectrometry, 2018, 28(8):1283-1287. https://pubs.rsc.org/en/content/articlelanding/2013/ja/c3ja50121c/unauth#!

    吴永盛, 徐金龙, 庄姜云, 等.微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中8种重金属元素[J].中国无机分析化学, 2017, 7(4):16-20. doi: 10.3969/j.issn.2095-1035.2017.04.004

    Wu Y S, Xu J L, Zhuang J Y, et al.Simultaneous determination of eight heavy metals in soil by microwave digestion-ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4):16-20. doi: 10.3969/j.issn.2095-1035.2017.04.004

    Wu C H, Jiang S J, Sahayam A C.Using electrothermal vaporization inductively coupled plasma mass spectrometry to determine S, As, Cd, Hg, and Pb in fuels[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 147(10):115-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2495c841d7a515e105937f4a3a474822

    Scheffler G L, Makonnen Y, Pozebon D, et al.Solid sampling analysis of Mg alloy using electrothermal vaporization inductively coupled plasma optical emission spectrometry[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10):2041-2045. doi: 10.1039/C7JA00203C

    Borno F, Richter S, Deiting D, et al.Direct multi-element analysis of plastic materials via solid sampling electrothermal vaporization inductively coupled plasma optical emission spectroscopy[J].Journal of Analytical Atomic Spectrometry, 2015, 30(5):1064-1071. doi: 10.1039/C4JA00442F

    Albena D, Peter B, Juergen H.Calibration possibilities and modifier use in ETV-ICP-OES determination of trace and minor elements in plant materials[J].Analytical & Bioanalytical Chemistry, 2009, 394(5):1485-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a28a2d7275af4abc57942295174950d1

    Yilmaz H C, Hattendorf B.A comparison of signal sup-pression and particle size distributions for ns- and fs-LA for metallic samples by LA-ETV-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10):1980-1987. doi: 10.1039/C7JA00176B

    毛雪飞.固体进样电热蒸发原子阱捕获光谱技术快速测定农产品中镉和汞的研究[D].北京: 中国农业科学院, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2787807

    Mao X F.Study on Determination of Cadmium and Mercury in Agri-foods by Solid Sampling Electrothermal Vaporization Spectrometry Using Atomic Traps[D].Beijing: Chinese Academy of Agricultural Sciences, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2787807

    Silva J S, Henn A S, Dressler V L, et al.Feasibility of rare earth element determination in low concentration in crude oil:Direct sampling electrothermal vaporization-inductively coupled plasma mass spectrometry[J].Analytical Chemistry, 2018, 90(11):7064-7071. doi: 10.1021/acs.analchem.8b01460

    Hsu W H, Jiang S J, Sahayam A C.Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J].Analytical Chimica Acta, 2013, 794(17):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91f691bba096a858f3f9cf75b3f3373a

    Sadiq N, Huang L, Kaveh F, et al.Solid sampling ETV-ICPOES coupled to a nebulization/pre-evaporation system for direct elemental analysis of glutinous rice by external calibration with standard solutions[J].Food Chemestry, 2017, 237(15):1-6. http://cn.bing.com/academic/profile?id=3c90fc772af83dc6149b04631a8c2073&encoded=0&v=paper_preview&mkt=zh-cn

    de Gois J S D, Pereira É R, Welz B, et al.Simultaneous deter-mination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis[J].Analytical Chimica Acta, 2014, 852(10):82-87. http://www.sciencedirect.com/science/article/pii/S000326701401109X

    王樊, 何蔓, 陈贝贝, 等.二氧化钛涂覆中空纤维膜微萃取-电热蒸发-电感耦合等离子体质谱分析环境样品中痕量重金属[J].分析化学, 2015, 43(9):1313-1321. http://d.old.wanfangdata.com.cn/Periodical/fxhx201509011

    Wang F, He M, Chen B B, et al.TiO2-coated hollow fiber micro-extraction combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for trace elements analysis in environmental water samples[J].Chinese Journal of Analytical Chemistry, 2015, 43(9):1313-1321. http://d.old.wanfangdata.com.cn/Periodical/fxhx201509011

    Henn A S, Flores E M M, Dressler V L, et al.Feasibility of As, Sb, Se and Te determination in coal by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2018, 33(8):1384-1393. doi: 10.1039/C8JA00129D

    陈江, 姚玉鑫, 费勇, 等.微波消解等离子体发射光谱和石墨炉原子吸收光谱法联合测定土壤中多元素[J].岩矿测试, 2009, 28(1):25-28. doi: 10.3969/j.issn.0254-5357.2009.01.006

    Chen J, Yao Y X, Fei Y, et al.Determination of multi-elements in soil samples by inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2009, 28(1):25-28. doi: 10.3969/j.issn.0254-5357.2009.01.006

    Lum T S, Leung K.Strategies to overcome spectral interference in ICP-MS detection[J].Journal of Analytical Atomic Spectrometry, 2016, 31(5):1078-1088. doi: 10.1039/C5JA00497G

    Frank V, Martín R, Luc M.Electrothermal vaporisation ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples-A review of real-life applications from the author's lab[J].Analytical & Bioanalytical Chemistry, 2002, 374(2):188-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=186d70bea7f982136547212a2edff48b

    Hanć A, Piechalak A, Tomaszewska B, et al.Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant's thin sections[J].International Journal of Mass Spectrometry, 2014, 363(1):16-22. http://cn.bing.com/academic/profile?id=3bc071c29d302c2ec83d56a6143f5a78&encoded=0&v=paper_preview&mkt=zh-cn

    Kaveh F, Beauchemin D.Improvement of the capabilities of solid sampling ETV-ICP-OES by coupling ETV to a nebulisation/pre-evaporation system[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8):1371-1377. doi: 10.1039/C4JA00041B

    Zhang Y F, Hu B.Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization[J].Journal of Analytical Atomic Spectrometry, 2011, 1(6):163-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e35f8903054bebdf982462d6353f3317

    Zhang S, He M, Yin Z, et al.Elemental fractionation and matrix effect in laser sampling based spectrometry[J].Journal of Analytical Atomic Spectrometry, 2016, 31(2):358-382. doi: 10.1039/C5JA00273G

    李世珍, 朱祥坤, 吴龙华, 等.干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J].地球学报, 2011, 32(6):754-760. doi: 10.3975/cagsb.2011.06.14

    Li S Z, Zhu X K, Wu L H, et al.A comparative study of plant sample preparation by dry ashing and wet digestion for isotopic determination of Cu, Zn and Fe[J].Acta Geoscientica Sinica, 2011, 32(6):754-760. doi: 10.3975/cagsb.2011.06.14

    刘珂珂, 霍现宽, 褚艳红, 等.超声辅助-王水提取法在测定土壤中重金属元素的应用[J].冶金分析, 2019, 39(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201901008

    Liu K K, Huo X K, Chu Y H, et al.Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J].Metallurgical Analysis, 2019, 39(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201901008

    黄楚楚, 李青, 张国霞, 等.上海市区大气颗粒物(PM2.5)中铅、镉的分析测定和污染特征研究[J].分析化学, 2016, 44(7):1047-1052. http://d.old.wanfangdata.com.cn/Periodical/fxhx201607008

    Huang C C, Li Q, Zhang G X, et al.Analysis of pollution characteristics of cadmium and lead in atmospheric particulates(PM2.5) of Shanghai downtown[J].Analytical Chemistry, 2016, 44(7):1047-1052. http://d.old.wanfangdata.com.cn/Periodical/fxhx201607008

    Diegor W, Longerich H, Abrajano T, et al.Applicability of a high pressure digestion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J].Analytical Chimica Acta, 2001, 431(2):195-207. doi: 10.1016/S0003-2670(00)01339-8

    周雪明, 郑乃嘉, 李英红, 等.2011~2012北京大气PM2.5中重金属的污染特征与来源分析[J].环境科学, 2017, 38(10):4054-4060. http://d.old.wanfangdata.com.cn/Periodical/hjkx201710008

    Zhou X M, Zheng N J, Li Y H, et al.Chemical characteristics and sources of heavy metals in fine particles in Beijing in 2011-2012[J].Environmental Science, 2017, 38(10):4054-4060. http://d.old.wanfangdata.com.cn/Periodical/hjkx201710008

  • 期刊类型引用(9)

    1. 付玉蕾,史淼,曹沁元,马世玉. 黑青和田玉宝石矿物学及地球化学特征研究. 岩石矿物学杂志. 2024(03): 630-642 . 百度学术
    2. 廖宗廷,景璀,李平,沈俊逸,金雪萍. 和田玉研究的关键问题. 同济大学学报(自然科学版). 2022(08): 1073-1080+1070 . 百度学术
    3. 张晓晖,冯玉欢,张勇,买托乎提·阿不都瓦衣提. 新疆且末—若羌地区黄绿色和田玉分析测试及特性表征. 岩矿测试. 2022(04): 586-597 . 本站查看
    4. 崔中良,黄怡祯,郭心雨. 闪石玉研究进展的文献计量学分析. 宝石和宝石学杂志(中英文). 2022(05): 155-169 . 百度学术
    5. 闵红,刘倩,张金阳,周海明,严德天,邢彦军,李晨,刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试. 2021(01): 74-84 . 本站查看
    6. 黄倩心,王时麒,梁国科,杨晓东,吴祥珂. 广西巴马玉的矿物学特征及其成因探讨. 岩石矿物学杂志. 2021(05): 977-990 . 百度学术
    7. 杨凌岳,王雨嫣,王朝文,沈梦颖,殷科. “撒金花黑青玉”的宝石学特征与成因矿物学研究. 宝石和宝石学杂志(中英文). 2020(04): 1-12 . 百度学术
    8. 刘喜锋,贾玉衡,刘琰. 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究. 岩矿测试. 2019(03): 316-325 . 本站查看
    9. 郑奋,刘琰,张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究. 岩矿测试. 2019(04): 438-448 . 本站查看

    其他类型引用(14)

图(4)  /  表(3)
计量
  • 文章访问数:  2636
  • HTML全文浏览量:  555
  • PDF下载量:  55
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-06
  • 录用日期:  2019-10-20
  • 发布日期:  2019-12-31

目录

/

返回文章
返回