• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨

刘振庄, 白名岗, 杨玉茹, 张聪, 王向华, 陈娟, 谢婷, 方立羽, 秦丽娟

刘振庄, 白名岗, 杨玉茹, 张聪, 王向华, 陈娟, 谢婷, 方立羽, 秦丽娟. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨[J]. 岩矿测试, 2020, 39(2): 199-207. DOI: 10.15898/j.cnki.11-2131/td.201907110100
引用本文: 刘振庄, 白名岗, 杨玉茹, 张聪, 王向华, 陈娟, 谢婷, 方立羽, 秦丽娟. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨[J]. 岩矿测试, 2020, 39(2): 199-207. DOI: 10.15898/j.cnki.11-2131/td.201907110100
LIU Zhen-zhuang, BAI Ming-gang, YANG Yu-ru, ZHANG Cong, WANG Xiang-hua, CHEN Juan, XIE Ting, FANG Li-yu, QIN Li-juan. Discussion on the Genesis and Exploration Potential of Different Microscopic Forms of Organic Matters in the Longmaxi Formation Shale[J]. Rock and Mineral Analysis, 2020, 39(2): 199-207. DOI: 10.15898/j.cnki.11-2131/td.201907110100
Citation: LIU Zhen-zhuang, BAI Ming-gang, YANG Yu-ru, ZHANG Cong, WANG Xiang-hua, CHEN Juan, XIE Ting, FANG Li-yu, QIN Li-juan. Discussion on the Genesis and Exploration Potential of Different Microscopic Forms of Organic Matters in the Longmaxi Formation Shale[J]. Rock and Mineral Analysis, 2020, 39(2): 199-207. DOI: 10.15898/j.cnki.11-2131/td.201907110100

龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨

基金项目: 

“十三五”国家科技重大专项项目(2016ZX034003-006)

“十三五”国家科技重大专项项目 2016ZX034003-006

详细信息
    作者简介:

    刘振庄, 硕士研究生, 地质工程专业。E-mail:1758591147@qq.com

    通讯作者:

    张聪, 博士, 高级工程师, 石油地质专业。E-mail:397716026@qq.com

  • 中图分类号: P619.227;P575.2

Discussion on the Genesis and Exploration Potential of Different Microscopic Forms of Organic Matters in the Longmaxi Formation Shale

  • 摘要: 有机质是页岩中最重要的组分,有机孔更是页岩气重要的储集空间,以扫描电镜为主流的微观分析检测技术成为页岩研究的重要手段,目前对有机质的综合研究正逐步成为页岩气勘探开发研究的重要内容。本次研究选取四川盆地及其外围龙马溪组富有机质页岩,采用氩离子抛光非镀膜样品,利用低电压近距离工作状态,对样品进行了高分辨率场发射扫描电镜检测,观察、总结了有机质显微形态,并依据其内部结构及组成特征对其生烃及储集能力进行了探讨。检测结果揭示:龙马溪组富有机质页岩中有机质主要有三种显微形态,分别是结构型沉积有机质、分异型交生有机质和填隙型运移有机质。结构型沉积有机质形成于沉积及早期成岩演化阶段,保留了部分生物结构特征或沉积定向构造;分异型交生有机质与黏土矿物交互生长并经历演化分异作用,形成了类似于岩浆岩中的“花岗结构”;而填隙型运移有机质形成于晚成岩有机质高演化阶段,为液态烃充填于自生矿物晶间,其周边矿物具有自形特征。龙马溪组页岩以填隙型运移有机质和分异型交生有机质为主,二者都发育丰富的有机质孔隙(孔径10~300nm),是龙马溪组页岩优质的生气母质,并具有优质的储集性能。研究结果为我国海相龙马溪组页岩气生成理论及勘探开发评价提供了较深层次的微观信息。
    要点

    (1) 总结四川盆地及其外围龙马溪组页岩中有机质的显微形态。

    (2) 探讨三种不同显微形态有机质的成因、内部组构及孔隙发育与生烃能力。

    (3) 提出填隙型运移有机质和分异型交生有机质是龙马溪组页岩中主要有机质类型和生烃母质。

    HIGHLIGHTS

    (1) The microscopic morphology of organic matter in shale of the Longmaxi Formation in Sichuan Basin and its periphery was summarized.

    (2) The genesis, internal structure and composition characteristics of three different microscopic forms of organic matter were discussed.

    (3) The interstitial migration organic matter and the differentiated symbiotic organic matter were the main types of organic matter and the parent material of hydrocarbon generation in shale of the Longmaxi Formation.

  • 硫酸盐广泛分布于自然界的岩石圈与水圈之中,硫酸盐矿物氧同位素组成可以提供其形成过程和条件的信息,常常被用于研究地下水的水质演化、河水溶解性硫酸盐来源和主要控制因素、硫酸溶洞的形成过程、污染来源、古海洋的重建、微生物对硫酸盐的还原作用等[1-6]

    目前,硫酸盐的氧同位素分析一般是将硫酸盐转化为硫酸银(Ag2SO4)或硫酸钡(BaSO4)[7],在形成沉淀的过程中,过量的AgNO3容易被Ag2SO4沉淀包裹而影响硫酸根的氧同位素组成,因此,常用的方法是添加氯化钡(BaCl2)将硫酸盐转化为BaSO4,然后测定硫酸钡的氧同位素组成(δ18O)[8],主要分为离线法和在线连续流方法。离线法主要有氟化法和碳还原法[9-11],其分析流程复杂,样品结果受人为操作干扰大,此外,氟化法所使用的五氟化溴、氟气等强氧化性气体危险性高,因而应用较少。在线连续流高温分解固体有机物的概念于1993年由Gygli[12]提出,之后Werner等[13]及Koziet[14]改进了Gygli方法[12],将元素分析仪(EA)与稳定同位素质谱仪(IRMS)联接,氦气作为载气,分别于1080℃及1300℃高温下用玻璃碳将有机物分解转化为CO,测定其氧同位素组成。方玲等[15]应用高温裂解法(HT)在1325℃下对高氯酸盐进行氧同位素测试,测试精密度为±0.3‰。这些方法的发展,促使在线高温裂解法测定含氧无机盐类氧同位素的测试技术逐渐应用于BaSO4氧同位素的在线测试。

    为了获得准确的BaSO4氧同位素组成,需要更高的温度才能将BaSO4完全分解。Kornexl等[16]、Michalski等[17]以及Sharp等[18]将在线高温裂解BaSO4的反应温度分别提高到1400℃、1425℃及1450℃,高温下分解产生的氧气或含氧化合物与玻璃碳粒还原反应生成CO,通过CO测试其氧同位素组成,测试精密度分别为±0.5‰、±0.2‰及±0.2‰。但反应炉长时间维持1400℃以上的高温,这对于炉膛也是一个考验。为了降低BaSO4的在线裂解温度,Böhlke等[19]将碳粉与BaSO4样品混合装入银杯后在线进样,反应温度降低至1325℃,其δ18O的重现性为±0.2‰~±0.3‰。Morrison[20]使用镀镍碳(Ni-C)与BaSO4样品混合装入锡杯后通过EA进样,进一步将反应温度降低至1260℃。

    从前人研究成果[16-19]可以看出,在线高温裂解法测定BaSO4氧同位素组成的测试精度一般优于±0.5‰,但是不添加还原剂直接在线高温裂解BaSO4反应温度为1400~1450℃,长时间1400℃以上的高温工作极易缩短反应炉的寿命,并且背景值m/z=28、29、30离子流强度较高,过高的背景值影响测试准确度。BaSO4样品与碳粉或Ni-C混合后在线进样,可以降低反应温度,但对于碳粉或Ni-C是否有本底以及如何处理的方法未见报道。Morrison[20]报道的反应温度可以低至1260℃,但只是在一篇应用简报中对此分析方法作简单描述,其测试精密度没有给出。除了上述问题,关于在线高温裂解法测试BaSO4氧同位素组成的关键技术参数与影响因素也缺乏系统性探讨。因此,本文添加Ni-C作为还原剂,与BaSO4样品混合均匀后包裹于银杯进样,开展了本底、Ni-C、反应温度、样品质量等条件参数对EA/HT-IRMS系统测定BaSO4氧同位素组成的准确度与精密度的影响研究,以拓展该同位素测试技术的应用范围。

    硫酸钡与碳在高温下可发生以下化学反应:

    $\begin{array}{l} {\rm{BaS}}{{\rm{O}}_4} + 2{\rm{C}} = {\rm{BaS}} + 2{\rm{C}}{{\rm{O}}_2} \uparrow \\ {\rm{C}} + {\rm{C}}{{\rm{O}}_2} = 2{\rm{CO}} \end{array} $

    ${\rm{BaS}}{{\rm{O}}_4} + 4{\rm{C}} = {\rm{BaS}} + 4{\rm{CO}} \uparrow $

    也可能存在如下的副反应:

    $\begin{array}{l} {\rm{BaS}}{{\rm{O}}_4} + 2{\rm{C}} = {\rm{BaO}} + {\rm{COS}} \uparrow + {\rm{C}}{{\rm{O}}_2} \uparrow \\ {\rm{BaS}}{{\rm{O}}_4} + {\rm{C}} = {\rm{BaO}} + {\rm{S}}{{\rm{O}}_2} \uparrow + {\rm{CO}} \uparrow \\ {\rm{BaS}}{{\rm{O}}_4} + 4{\rm{CO}} = {\rm{BaS}} + 4{\rm{C}}{{\rm{O}}_2} \end{array} $

    上述化学反应中,BaSO4中的O全部转化为CO,是氧同位素组成测试的关键因素。为了实现BaSO4氧同位素组成的准确测定,设置离子源发射电流为1.5mA,Conflo Ⅳ的氦气载气压力为1.01×105Pa,EA/HT系统氦气载气流量为90mL/min,参考气Reference流量为225mL/min,色谱分离柱温度为70℃,反应管的填充方案与徐文等[21]报道的相同。测试流程为:称取一定质量BaSO4样品与Ni-C,装入银杯中用镊子压紧,样品经固体自动进样器送入反应管,BaSO4样品与Ni-C在高温下发生还原反应生成CO,CO在高纯氦气载气的吹扫下通过水阱,进入柱温70℃的不锈钢色谱柱(1m×6mm×5mm,内填5Å分子筛),与N2(图 1)有效分离后的CO进入Conflo Ⅳ气体接口装置分流,最后导入气体稳定同位素比值质谱仪(IRMS)中测试δ18OVSMOW值。

    图  1  Ni-C产生CO峰形示意图
    Figure  1.  Schematic diagram of CO peak shape of Ni-C

    本实验测试装置主要有气体同位素质谱仪(IRMS)、元素分析仪(EA/HT)、气体接口装置(Conflo Ⅳ),均为美国ThermoFisher公司产品。

    反应管主要由陶瓷管、玻璃碳管以及内部填充的银丝、石英棉、玻璃碳粒、石墨坩埚、石墨管组成,均产自美国ThermoFisher公司。

    包裹BaSO4样品所用的银杯及还原剂镀镍碳为SÄNTIS Analytical AG公司产品。实验所用国际参考物质NBS-127、IAEA-SO-5以及条件试验样品STLS均为BaSO4固体。

    载气(氦气)及参考气(CO)气体纯度为99.999%,北京氦谱北分气体工业有限公司产品。

    BaSO4氧同位素组成的在线测定方法中,本底主要有三个方面,其中氦气及仪器造成的CO本底主要影响峰形的基线,另外两个因素银杯及Ni-C可能含有氧,与BaSO4中的氧产生混染。不消除这些因素都可能对实验结果产生影响,进而引起BaSO4氧同位素组成测试偏差。

    (1) 氦气及仪器

    氦气及仪器造成的CO本底主要影响峰形的基线,必须严格控制m/z=28、29、30离子流强度在200mV以内,并确保稳定。本底过高或者不稳定,在样品测试时均会对峰形造成影响,进而影响测试的准确度。实验发现,测试一定数量的样品之后,色谱柱可能会吸附杂质气体,导致背景值升高。因此,测试前需要对色谱柱进行150℃的高温过夜烘烤,之后降温至70℃。烘烤后发现,背景m/z=28、29、30离子流强度显著下降。

    (2) 银杯

    银杯在空气中放置一段时间后可能发生氧化变成黄色,形成Ag2O。被氧化的银杯在高温下与C反应生成CO,与BaSO4产生的CO形成混染,对测试结果产生干扰。因此,需要挑选洁净的银杯进行本底实验。实验结果表明,洁净空银杯基本不产生CO离子流,不会影响BaSO4样品测试。

    (3) Ni-C

    Ni-C具有催化还原性能,可以有效改善BaSO4的反应进程,既能降低BaSO4的高温分解温度,又能促进CO的生成。但Ni-C作为还原剂,Ni-C可能会发生氧化或者吸附含氧物质,在高温下与C反应生成CO,影响测试结果。

    称取2000μg没有经过高温处理的Ni-C进行实验,如图 1中1所指的实线部分,m/z 28离子流强度大约100mV,推测为镍氧化或者吸附水产生的本底。为了除掉Ni-C中的氧,在1350℃高温氦气流下进行2h以上的灼烧,通过质谱仪可以明显地监测到m/z 28离子流强度开始升高,最高可达数千mV,之后逐渐降低至正常水平。降温后再次称取2000μg的Ni-C进行实验,2000μg的Ni-C形成的峰形如图 1中2所指虚线部分,CO形成小突起,其离子流强度小于50mV,对于离子流强度高达10000mV的样品峰来说,小于50mV对样品测试的影响可以忽略[16]

    综上所述,将氦气及仪器形成CO离子的背景值控制在200mV以内,挑选洁净银杯,对Ni-C高温处理后装入银杯进样,形成的本底小于50mV,满足以上条件,方可添加Ni-C进行BaSO4样品高温裂解实验。

    在不添加还原剂的情况下,为保证较好的测试精密度及BaSO4瞬间完全分解,需要1420℃以上的高温[15-17],但是,一个序列分析样品一般在50个以上,通常将样品加入自动进样器过夜测试,长时间在1420℃以上的高温下工作,加热炉的使用寿命会受到极大影响。为了降低反应温度,出现了将碳粉或者Ni-C与BaSO4样品混合后进样的在线分析方法。Böhlke等[19]将碳粉与BaSO4样品混合后在线进样,反应温度降低至1325℃,但是该文中绝大部分篇幅在讨论硝酸盐的氧同位素组成测试,对于BaSO4样品测试只是简单描述,仅仅给出1325℃下的测试数据,没有进行温度序列的细致分析。Morrison[20]使用Ni-C与BaSO4样品混合装入锡杯后进样,将反应温度降低至1260℃,对于测试过程并没有进行详细报道,另外,虽然温度降低了,但是锡杯容易升华并凝固于反应管内壁,造成反应管的清理难度增加。

    为了获得详细的实验数据以及最佳的BaSO4高温裂解温度,本实验使用m/z=28离子流强度/质量(mV/μg)代表BaSO4分解的完全程度。该值越高,反应越充分。温度逐渐升高,若该值稳定在一定范围,认为反应完全。不添加Ni-C,进行了1150~1450℃共10个温度点的BaSO4高温裂解试验,反应温度从1150℃升高到1325~1400℃区间,m/z=28的离子流强度与BaSO4质量比值从8.4mV/μg升高到15.8mV/μg左右,反应不完全;随着温度升高到1425~1450℃区间时,该比值继续增加到16.6 mV/μg左右后趋于稳定(图 2a),该温度范围与国外学者[16-18]研究成果基本吻合。由图 2b可以看出,当温度在1425℃以上时,两个δ18O平均值为8.57‰±0.07‰,更接近其离线定值。因此,可以确定m/z 28的离子流强度/BaSO4质量比值达到16.6mV/μg作为BaSO4反应完全的参数指标。

    图  2  反应温度与离子强度/质量和δ18O关系图
    Figure  2.  Correlation between the reaction temperature and ratio of the signal intensity to mass and δ18O

    将Ni-C与BaSO4样品STLS混合均匀后进样,由图 2c可以看出,反应温度从1150℃升高时,m/z 28的离子流强度/BaSO4质量比值从11.5mV/μg逐渐增大,当达到1350℃以上时,与上述1425℃以上的离子流强度/BaSO4质量比值一致,稳定在16.6mV/μg左右,表明BaSO4反应完全。该趋势与BaSO4δ18O值的变化(图 2d)极为吻合,当温度处于1350℃以上时,δ18O值为8.56‰±0.19‰,趋于稳定,且与BrF5离线制样测得的δ18O值8.49‰±0.22‰在误差范围内。

    在不添加Ni-C以及添加Ni-C两种情况下,在1150~1450℃共10个温度点分别运用在线高温裂解法对BaSO4氧同位素组成进行了测试研究,认为添加Ni-C作为还原剂,可以将BaSO4裂解温度降低至1350℃,δ18O测试精密度为±0.20‰,优于在1420℃以上测试获得的精密度(±0.20‰~±0.50‰)[16-18],既保证了精密度满足要求,也达到降低反应温度的目的。

    Ni-C与BaSO4质量比影响BaSO4瞬间反应程度,按照化学方程式计算C与BaSO4全部生成CO的摩尔比值为4,换算成质量比值大约为0.25,Ni-C中的C含量大约70%,使用Ni-C与BaSO4完全反应的质量比值为0.36。实际测试过程中,为了保证反应完全,需要加入过量的还原剂Ni-C。万德芳等[9]采用离线制样使用石墨粉与硫酸钡的质量比为2;Böhlke等[19]通过在线高温裂解法,将500μg石墨粉与750μg硫酸钡混合后装入银杯进样,质量比例约为0.67;Fourel等[22]使用Ni-C与Ag2SO4质量比值大约1。以上离线及在线制样获得的δ18O测量精密度为±0.20‰。而在实际称样时,由于样品量是μg级,准确称量比较困难,因此考虑确定一个大概的Ni-C/BaSO4质量比值范围,对于样品分析人员更加具有实用性。

    针对上述问题,配制不同质量比的Ni-C与BaSO4混合后进样,在1350℃下进样6次,δ18O测试结果列于表 1。当Ni-C/BaSO4质量比值为0.35时,该比值略小于Ni-C与BaSO4完全反应的质量比值0.36,离子流强度/BaSO4质量比值为16.13,峰形出现拖尾现象,进一步证明了瞬间反应不完全;当Ni-C/BaSO4质量比值为0.73~3.34时,反应较为完全,质量比值为3.34时的δ18O值出现异常,推测为过量的Ni-C干扰了BaSO4分解反应,其影响机制尚不清楚。除掉第1次及第6次的测定值,Ni-C/BaSO4质量比值范围为0.73~2.15时,δ18O四次测试平均值为8.55‰±0.13‰。相对于其他研究成果[19, 22],本实验中C与BaSO4的质量比值范围更加宽泛,更加有利于样品的称量;另外,δ18O精密度优于±0.20‰,与他人研究[19-20]一致。

    表  1  不同Ni-C/BaSO4质量比值测试数据
    Table  1.  Measurement results for different ratio of Ni-C/BaSO4
    参数 第1次 第2次 第3次 第4次 第5次 第6次
    BaSO4质量(μg) 791 778 793 725 738 708
    Ni-C质量(μg) 279 570 931 1182 1588 2362
    Ni-C/BaSO4质量比值 0.35 0.73 1.17 1.63 2.15 3.34
    离子流强度(mV) 12759 12943 13108 12132 12318 11845
    离子流强度/BaSO4
    质量比值(mV/μg)
    16.13 16.64 16.53 16.73 16.69 16.73
    δ18O(‰) 8.48 8.52 8.59 8.69 8.39 7.97
    下载: 导出CSV 
    | 显示表格

    样品质量对于同位素测试结果的影响可以用线性来考量,仪器的线性主要由参考气来测试。查向平等[23]研究发现,实际分析测试过程中,样品44CO2离子强度在2000~6000mV能够获得相对稳定和高精度的同位素比值,此时δ18O值与离子流强度的线性小于0.1‰/V;韩娟等[24]对不同质量的硫化银样品进行测试后认为,需要严格控制样品量在420±50μg,才能满足δ34S的测试精密度优于±0.2‰的要求。借鉴上述研究成果,本实验称取不同质量的BaSO4样品来测试其线性,并且控制BaSO4在一定的质量范围内,满足线性指标小于0.1‰/V、δ18O测试精密度优于±0.2‰的要求,这对于实际操作更加具有指导意义。

    称取305~1052μg范围内共9个不同质量的BaSO4样品STLS,同时称取大约等量的Ni-C,混合后分别进行试验,测试结果列于表 2。可见BaSO4样品质量与m/z 28离子流强度(V)的线性关系为y=59.72x+6.716,即每60μg的BaSO4样品产生约1V的m/z 28离子流强度;δ18O值与m/z 28离子流强度(V)的线性关系为y=-0.079x+9.605,表明m/z 28离子流强度每变化1V,对δ18O值的影响为0.08‰;BaSO4样品质量与δ18O的线性关系为y=-0.001x+9.614,表示1μg的BaSO4样品质量变化引起δ18O的测试偏差为0.001‰。由以上关系式可以计算出BaSO4δ18O的精密度达到±0.2‰,需要控制BaSO4样品质量差在200μg以内。选取636~822μg共4个样品计算其δ18OVSMOW值为8.65‰±0.06‰,测试结果稳定且与离线定值在误差范围内。该质量范围与Böhlke等[19]的样品用量吻合。因此,考虑将Ni-C及BaSO4样品量控制在700±100μg,测试BaSO4δ18O值精密度可以达到±0.2‰左右。

    表  2  BaSO4不同样品量测试数据
    Table  2.  Measurement results for different amounts of BaSO4 sample
    参数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次
    BaSO4质量(μg) 305 392 519 636 703 802 822 939 1052
    Ni-C质量(μg) 292 376 505 739 766 1279 675 946 1105
    m/z 28离子流强度(V) 4.88 6.40 8.73 10.63 11.72 13.30 13.59 15.61 17.44
    δ18OVSMOW(‰) 8.99 9.33 8.92 8.72 8.67 8.58 8.63 8.33 8.14
    下载: 导出CSV 
    | 显示表格

    在以上实验的基础上,为了验证EA/HT-IRMS法测定BaSO4δ18O值的有效性,选用BaSO4标准物质进行验证。查向平等[25]认为标准物质应该与分析的样品具有相同或类似的化学组分,最好的方案是基于线性回归的两点或多点标准化方法。由于储存及同位素稳定性方面等原因,目前BaSO4给出δ18O参考值的只有NBS-127。国外部分学者[16, 19, 26-27]对于BaSO4标准物质IAEA-SO-5(δ34S有参考值,δ18O没有参考值)的δ18O值进行了测试并给出了测定值。本实验考虑采用单标准NBS-127定值来验证IAEA-SO-5的准确度与精密度[28]

    设置反应炉温度1350℃,分别控制Ni-C及BaSO4样品量为700±100μg,在线高温裂解法测试NBS-127共5次的δ18OVSMOW校正结果为9.30‰±0.26‰,使用该值对IAEA-SO-5进行单标准定值计算,其δ18OVSMOW值为12.04‰±0.12‰,准确度及精密度均优于±0.26‰,等同于表 3所示国外学者的结果。

    表  3  国外学者及本次实验IAEA-SO-5的δ18O值
    Table  3.  Measured δ18O values of IAEA-SO-5 obtained by foreigners and the author
    研究出处 δ18O测试值
    (‰)
    Kornexl等[16] 12.0±0.2
    Böhlke等[19] 11.99±0.18
    Geilmann等[26] 12.00
    Halas等[27] 12.20±0.07
    本实验 12.04±0.12
    下载: 导出CSV 
    | 显示表格

    相对于传统离线法,在线高温裂解法分析BaSO4的氧同位素组成具有效率高、样品用量少等优点,该方法的条件参数和标准物质的选择都可能影响δ18O测试的准确度与精密度。为延长反应炉的使用寿命,降低实验成本,本研究添加Ni-C作为还原剂,开展了Ni-C及相关条件参数对于EA/HT-IRMS法测试BaSO4δ18O准确度与精密度影响的系统性研究,主要获得以下结论:①添加Ni-C能降低反应温度,但Ni-C可能引入本底,对Ni-C进行高温灼烧可消除其本底影响。②测试BaSO4δ18O精密度受反应温度的影响显著,在保证测试精密度以及延长反应炉使用寿命的前提下,确定了1350℃为最佳反应温度。③Ni-C与BaSO4的添加比例既要考虑反应完全,也要考虑不能过大,确定两者的质量比为0.73~2.15,大大提高了称量的可操作性。④BaSO4样品质量对其δ18O值的测试影响可以通过δ18O值与BaSO4样品量的线性指标来考量,本实验的线性指标为0.001‰/μg,为了保证样品测试的精密度优于±0.20‰,推荐的样品量为700±100μg。⑤样品测试结果的准确度是检验分析测试方法的重要指标。采用单一标准NBS-127校正法标定IAEA-SO-5的δ18O值,准确度与国外学者一致;采用本文EA/HT-IRMS法测试BaSO4δ18O值,精密度为±0.12‰~±0.26‰,优于国外学者的在线法。

    此外,对于其他天然的硫酸盐矿物,如石膏,直接使用EA/HT-IRMS法测定则需要进行部分条件参数的调整,这需要进行更多的研究拓展该方法的应用范围,为硫酸盐矿物δ18O值的准确测定提供科学依据。

  • 图  1   龙马溪组页岩中的结构型沉积有机质

    (1)形态特征a—条带状有机质;b—团块状有机质;c—生物碎屑。

    Figure  1.   Structural organic matter in shale of the Longmaxi Formation

    图  2   龙马溪组页岩中的结构型沉积有机质不发育孔隙

    a—生物碎屑不发育孔隙;b和c—条带状有机质不发育孔隙,可见收缩缝。

    Figure  2.   Undeveloped pores of structural organic matter in shale of the Longmaxi Formation

    图  3   龙马溪组页岩中的分异型交生有机质

    Figure  3.   Intersection differentiation organic matter type in shale of the Longmaxi Formation

    图  4   龙马溪组页岩中的分异型交生有机质孔隙特征

    Figure  4.   Pore characteristics of intersecting and differentiated organic matter in shale of the Longmaxi Formation

    图  5   龙马溪组页岩中的填隙型运移有机质

    Figure  5.   Gap-filing migration organic matter in shale of the Longmaxi Formation

    图  6   填隙型运移有机质孔隙发育特征

    Figure  6.   Pore development characteristics of gap-filling migration organic matter

    表  1   不同显微形态有机质能谱检测结果

    Table  1   Energy spectrum detection results of different microscopic forms of organic matter

    有机质显微形态类型 能谱点数 碳质量分数(%)
    区间 平均值
    结构型沉积有机质 生物碎屑 35 80~95 88
    条带状/不规则团块 35 75~95 85
    填隙型运移有机质 60 63~84 74
    分异型交生有机质 55 40~76 60
    下载: 导出CSV
  • 邹才能, 赵群, 董大忠, 等.页岩气基本特征、主要挑战与未来前景[J].天然气地球科学, 2017, 28(12):1781-1796. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712001

    Zou C N, Zhao Q, Dong D Z, et al.Basic characteristics, main challenges and future prospects of shale gas[J]. Natural Gas Earth Science, 2017, 28(12):1781-1796. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712001

    Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometerscale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research, 2009, 79(12) :848-861.

    Slatt R M, O'Brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12):2017-2030.

    Loucks R G, Reed R M.Scanning-Electron- Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter Versus Migrated Organic Matter in Mudrocks[R]. GCAGS Transactions, 2014: 51-60.

    Loucks R G, Reed R M, Ruppel S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. American Association of Petroleum Geologists Bulletin, 2012, 96:1071-1089. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7b6b4b569bed90a064cbc2a6673a7c

    董大忠, 王玉满, 李新景, 等.中国页岩气勘探开发新突破及发展前景思考[J].地质勘探, 2016, 36(1):19-32. http://d.old.wanfangdata.com.cn/Periodical/trqgy201601003

    Dong D Z, Wang Y M, Li X J, et al.New breakthrough and development prospect of shale gas exploration and development in China[J]. Geological Prospecting, 2016, 36(1):19-32. http://d.old.wanfangdata.com.cn/Periodical/trqgy201601003

    马永生, 蔡勋育, 赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201804003

    Ma Y S, Cai X Y, Zhao P R.The oretical understanding and practice of shale gas exploration and development in China[J]. Petroleum Exploration and Development, 2018, 45(4):561-574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201804003

    赵建华, 金之钧, 金振奎, 等.岩石学方法区分页岩中有机质类型[J].石油实验地质, 2016, 38(4):514-527. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604015

    Zhao J H, Jin Z J, Jin Z K, et al.The petrological method distinguishes the types of organic matter in shale[J]. Petroleum Experimental Geology, 2016, 38(4):514-527. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604015

    王香增, 张丽霞, 雷裕红, 等.低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例[J].石油学报, 2018, 39(2):141-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201802002

    Wang X Z, Zhang L X, Lei Y H, et al.Characteristics of migration of solid organic matter and organic pores in low mature lacustrine shale:A case study of Yanchang 7 Formation shale in Southeastern Ordos Basin[J]. Journal of Petroleum, 2018, 39(2):141-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201802002

    张慧, 焦淑静, 林伯伟, 等.扬子板块下寒武统页岩有机质与矿物质的成因关系[J].天然气勘探与开发, 2017, 40(4):25-33. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201704005

    Zhang H, Jiao S J, Lin B W, et al.The genetic relationship between the organic matter and minerals of the Lower Cambrian shale in the Yangtze Plate[J]. Natural Gas Exploration and Development, 2017, 40(4):25-33. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201704005

    张慧, 李贵红, 晋香兰.南方下古生界页岩中的有机质赋存状态及其成因[J].煤田地质与勘探, 2018, 46(1):51-55.

    Zhang H, Li G H, Jin X L.Occurrence and genesis of organic matter in the Lower Paleozoic shale in the South[J]. Coal Geology & Exploration, 2018, 46(1):51-55.

    白名岗, 夏响华, 张聪, 等.场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J].岩矿测试, 2018, 37(3):225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

    Bai M G, Xia X H, Zhang C, et al.Study on shale organic porosity in the Longmaxi Formation, AnYe-1 well using field emission-scanning microscopy and PeoGeos system[J]. Rock and Mineral Analysis, 2018, 37(3):225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

    张聪, 夏响华, 杨玉茹, 等.安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J].岩矿测试, 2019, 38(1):26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

    Zhang C, Xia X H, Yang Y R, et al.Raman spectrum characteristics of organic matter in Silurian Longmaxi Formation shale of Well Anye-1 and its geological significance[J]. Rock and Mineral Analysis, 2019, 38(1):26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

    帅琴, 黄瑞成, 高强, 等.页岩气实验测试技术现状与研究进展[J].岩矿测试, 2012, 31(6):931-938. http://www.ykcs.ac.cn/article/id/ykcs_20120604

    Shuai Q, Huang R C, Gao Q, et al.Current status and research progress of shale gas experimental testing technology[J]. Rock and Mineral Analysis, 2012, 31(6):931-938. http://www.ykcs.ac.cn/article/id/ykcs_20120604

    张盼盼, 刘小平, 王雅杰, 等.页岩纳米孔隙研究新进展[J].地球科学进展, 2014, 29(11):1242-1249. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201411004

    Zhang P P, Liu X P, Wang Y J, et al. New progress in the study of shale nano-pores[J]. Advances in Earth Science, 2014, 29(11):1242-1249. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201411004

    焦淑静, 张慧, 薛东川, 等.泥页岩孔隙类型、形态特征及成因研究[J].电子显微学报, 2015, 34(5):422-427. http://d.old.wanfangdata.com.cn/Periodical/dzxwxb201505012

    Jiao S J, Zhang H, Xue D C, et al.Study on pore types, morphological characteristics and genesis of mud shale[J]. Journal of Chinese Electron Microscopy, 2015, 34(5):422-427. http://d.old.wanfangdata.com.cn/Periodical/dzxwxb201505012

    魏红霞, 王聚杰, 曾普胜, 等.黔西北骑龙村剖面五峰—龙马溪组黑色页岩孔隙结构特征[J].中国地质, 2018, 45(2):274-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201802005

    Wei H X, Wang J J, Zeng P S, et al.Micropore structure characteristics of Wufeng—Longmaxi Formation black shale along Qilongcun section in Northwest Guizhou[J]. Geology in China, 2018, 45(2):274-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201802005

    郗兆栋, 田忠斌, 唐书恒.鄂尔多斯盆地东缘海陆过渡相页岩气储层孔隙特征及影响因素[J].中国地质, 2016, 43(6):2059-2069. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201606017

    Xi Z D, Tian Z B, Tang S H.Characteristics and main controlling factors of shale gas reservoirs in transitional facies on the eastern margin of Ordos Basin[J]. Geology in China, 2016, 43(6):2059-2069. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201606017

    戚明辉, 李君军, 曹茜.基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J].岩矿测试, 2019, 38(3):260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    Qi M H, Li J J, Cao Q.Characterization of shale pore structure based on scanning electron microscope and JMicroVision image analysis software[J]. Rock and Mineral Analysis, 2019, 38(3):260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    陈义才, 沈忠民, 罗小平, 等.石油与天然气有机地球化学[M].北京:科学出版社, 2007.

    Chen Y C, Shen Z M, Luo X P, et al.Organic Geochemistry of Oil and Gas[M]. Beijing:Science Press, 2007.

    Wilkin R T, Barnes H L, Brantley S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912.

    冉波, 孙玮, 王世玉, 等.四川盆地东南缘的五峰—龙马溪页岩中石英和黄铁矿的沉积-成岩演化特征及其意义[EB/OL].北京: 中国科技论文在线, 2014.

    Ran B, Sun W, Wang S Y, et al.Sedimentary-diagenetic evolution of quartz and pyrite in Wufeng—Longmaxi shale in the southeastern margin of Sichuan Basin and its significance[EB/OL]. Beijing: Chinese Sci-Tech Papers Online, 2014.

    李丹, 欧成华, 马中高, 等.黄铁矿与页岩的相互作用及其对页岩气富集与开发的意义[J].石油物探, 2018, 57(3):332-343. http://d.old.wanfangdata.com.cn/Periodical/sywt201803002

    Li D, Ou C H, Ma Z G, et al.Interaction between pyrite and shale and its significance for shale gas enrichment and development[J]. Petroleum Geophysical Exploration, 2018, 57(3):332-343. http://d.old.wanfangdata.com.cn/Periodical/sywt201803002

    傅家谟, 史继扬.石油演化理论与实践(Ⅰ)——石油演化的机理与石油演化的阶段[J].地球化学, 1975(2):87-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257697

    Fu J M, Shi J Y.Theory and practice of petroleum evolution (Ⅰ) —The mechanism of petroleum evolution and the stage of petroleum evolution[J]. Geochemistry, 1975(2):87-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000257697

    傅家谟, 史继扬.石油演化理论与实践(Ⅱ)——石油演化的实践模型和石油演化的实践意义[J].地球化学, 1977(2):87-104.

    Fu J M, Shi J Y.The theory and practice of petroleum evolution (Ⅱ) —The practical model of petroleum evolution and the practical significance of petroleum evolution[J]. Geochemistry, 1977(2):87-104.

    肖贤明, 傅家谟, 刘德汉, 等.烃类生成的显微岩石学特征研究[J].石油学报, 1993, 14(3):30-36.

    Xiao X M, Fu J M, Liu D H, et al.Study on micropetrological characteristics of hydrocarbon formation[J]. Journal of Petroleum, 1993, 14(3):30-36.

    肖贤明.有机岩石学及其在油气评价中的应用[J].地球科学进展, 1992(2):39-44.

    Xiao X M.Organic petrology and its application in oil and gas evaluation[J]. Advance in Earth Sciences, 1992(2):39-44.

图(6)  /  表(1)
计量
  • 文章访问数:  2692
  • HTML全文浏览量:  789
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 修回日期:  2019-08-14
  • 录用日期:  2019-10-20
  • 发布日期:  2020-02-29

目录

/

返回文章
返回