• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡

雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞

雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-332. DOI: 10.15898/j.cnki.11-2131/td.201812030127
引用本文: 雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-332. DOI: 10.15898/j.cnki.11-2131/td.201812030127
Zhan-chang LEI, Si-qin-tu HAN, Chang-ju JIANG, Hui-zhen LIANG. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. DOI: 10.15898/j.cnki.11-2131/td.201812030127
Citation: Zhan-chang LEI, Si-qin-tu HAN, Chang-ju JIANG, Hui-zhen LIANG. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. DOI: 10.15898/j.cnki.11-2131/td.201812030127

过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡

详细信息
    作者简介:

    雷占昌, 硕士, 工程师, 主要研究方向为环境分析检测和矿物资源利用。E-mail:512974381@qq.com

  • 中图分类号: O657.63;O614.432

Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion

  • 摘要: 原生锡矿石主要存在的矿床类型有矽卡岩型锡矿、斑岩型锡矿、锡石硅酸盐脉型锡矿、锡石硫化物脉型锡矿、石英脉及云英岩型锡矿。锡矿石一般不溶于盐酸、硝酸及王水体系,采用硫酸、氢氟酸处理时无法全部溶解。苯芴铜分光光度法和碘量法等传统测试方法存在受样品中伴生元素干扰大、稳定性差、检出限高、分析效率低等不足。本文建立了电感耦合等离子体质谱法测定原生矿石中锡元素含量的分析方法,用过氧化钠对样品进行熔融分解处理,热水浸取后用酒石酸-盐酸酸化,采用铑作为内标进行仪器信号漂移校正,同时用高倍稀释的方式来克服基体干扰。方法检出限为0.1μg/g,精密度小于5%,最低检出浓度为0.4μg/g,测试范围为12.5~12700μg/g。本方法操作简便,分析速度和数据质量都优于传统分析方法。
    要点

    (1) 采用过氧化钠碱熔ICP-MS准确测定矿石中的锡。

    (2) 采用高倍稀释和内标的方法克服基体干扰。

    (3) 过氧化钠碱熔与酒石酸-盐酸酸化避免了矿石溶解不完全、元素损失、锡易水解等缺点。

    HIGHLIGHTS

    (1) The content of tin in primary ores was determined by alkali fusion with sodium peroxide.

    (2) The interference of the matrix was overcome by multiple dilution and the application of an internal standard.

    (3) Alkali fusion by sodium peroxide and tartaric acid-hydrochloric acid acidification can avoid incomplete digestion of ore, loss of elements and easy hydrolysis of tin.

  • 油井岩心是发现油气层和研究地层结构的重要资料,其中汞的富集和扩散是岩心分析的一个重要指标[1]。在原油加工过程中,砷会影响催化剂的活性[2]。在地质找矿中,汞和砷也是重要指示元素[3]。石油钻探往往达到几千米的深度,需要投入巨大的人力和物力,测定油井岩心中汞和砷的含量,能够同时为石油钻探和地质找矿提供技术服务,达到节约高效的目标。

    汞和砷的测定方法有滴定法[4]、液相色谱法[5-6]、气相色谱法[7]、电感耦合等离子体发射光谱法[8]、分光光度法[9]、原子吸收光谱法[10-11]、电感耦合等离子体质谱法[12-13]、便携式仪器测定法[14-15]等。王水溶矿-原子荧光光度检测方法因其检出限低、灵敏度高、稳定性好、样品前处理简单而被广泛应用,如苏明跃等[16]采用王水消解-原子荧光光谱法测定矿石中的汞和砷,相对标准偏差在0.93%~8.1%之间;倪润祥等[17]采用湿法消解-原子荧光光谱法测定煤中的硒和砷,砷的相对标准偏差在5.6%~6.0%之间。但是,当采用王水溶解含油岩心时,由于原油的疏水性会造成许多样品漂浮在液面上,或者在溶液中的样品也由于表面原油的包裹与酸接触不充分[18],样品中的部分汞和砷无法被溶解出来,导致检测结果偏低。对于这种样品,传统方法主要通过高温烧制和强酸氧化将有机物分解后再进行溶矿测试。例如,罗荣根[19]利用高温分解载金碳中的汞,结果显示高温会造成汞的损失,导致结果偏低。杨常青等[20]用硝酸-硫酸-氢氟酸分解无烟煤中的汞,由于反应温度较高,敞口溶解造成结果偏低。

    索氏提取法是一种可以通过有机溶剂将原油从固体物质中提取分离出来的方法,该方法对原油的提取分离彻底,提取温度低不易造成汞和砷的损失,是对含油岩心中原油进行提取分离的理想选择。本文拟建立一种通过索氏提取法将岩心中的原油提取分离,用50%王水溶解剩余样品中的汞和砷元素,用原子荧光光谱仪测定汞和砷含量的方法。

    AFS-9561原子荧光光谱仪(北京海光仪器有限公司);汞、砷空心阴极灯(北京有色金属研究院)。测汞的工作条件为:灯电流30mA,辅助阴极电流0mA(汞灯没有辅助阴极),负高压300mV,载气流量300mL/min,原子化器高度8cm,读数时间12s,读数延迟时间3s,进样量1000μL,还原剂用量1834μL/min。测砷的工作条件为:灯电流30mA,辅助阴极电流15mA,负高压270mV,载气流量300mL/min,原子化器高度10cm,读数时间12s,读数延迟时间3s,进样量500μL,还原剂用量1000μL/min。

    索氏提取器(100mL,沈阳市昌昊玻璃仪器有限公司);RE-52A旋转蒸发仪(上海亚荣生化仪器厂)。

    砷、汞标准储备液(中国计量科学研究院,100μg/mL)。

    汞标准系列溶液(0、0.05、0.20、0.50、1.50、3.00、5.00μg/L):由汞标准储备液用含重铬酸钾(0.5g/L)的10%硝酸逐级稀释至所需浓度[21]

    砷标准系列溶液(0、0.5、2、5、15、50、100.00μg/L):由砷标准储备液用10%盐酸逐级稀释至所需浓度。

    氯仿;硝酸;盐酸;氢氧化钠;硼氢化钾;抗坏血酸;硫脲;抗坏血酸-硫脲混合溶液(抗坏血酸浓度50g/L,硫脲浓度50g/L);还原剂溶液(硼氢化钾浓度20g/L,氢氧化钠浓度5g/L);载流溶液(5%盐酸)。以上试剂均为分析纯,水为超纯水。

    选取油井含油层原油含量差异明显的4个岩心样品作为实验对象,编号为SY-1、SY-2、SY-3和SY-4。称取样品5g(粒径≤75μm)于滤纸筒中,将滤纸筒包好,放入索氏提取器中,向底瓶加入氯仿100mL,在75℃下提取8h,冷却,将提取液浓缩至5mL,转移至称量瓶中,室温挥发至干,称取抽提物质量。取出纸筒中岩心样品,晾干,待测[22]

    称取提取过的样品0.2500g于25mL比色管中,用水润湿,加入50%王水10mL,摇匀,在沸水浴中加热2h,中间摇匀2次[23],取出,冷却,定容至刻度,摇匀,放置过夜,待测。同时进行空白实验。

    移取上层清液10mL于样品管中,对汞进行测定。移取上层清液2.5mL于25mL比色管中,加入盐酸5mL,加入抗坏血酸-硫脲混合溶液5mL,摇匀,静置反应1h以上,对砷进行测定。

    称取含油岩心平行样品SY-1两份,一份经过索氏提取,一份未经过索氏提取,同时用50%王水加热分解,定容,两种处理所得的溶液如图 1所示,两种溶液中汞和砷测定结果见表 1。由图 1可见,对于未经过提取的样品溶液,由于原油的疏水性,许多样品漂浮在液面上,与酸接触不充分。与经过提取的样品溶液相比,未经过提取的样品溶液颜色明显偏淡,这主要是因为原油在溶矿过程中被氧化而消耗部分王水[24],导致王水中的氯化亚硝酰减少,氧化性变弱。由表 1检测结果对比可得,未经过提取的样品由于与酸接触不充分以及王水溶液氧化性变弱,导致汞和砷检测结果偏低。通过索氏提取法用氯仿对样品中的原油进行提取后,样品完全浸入王水溶液中,溶液颜色也显示为强氧化性的黄色,汞和砷检测结果明显增大。

    图  1  经过提取和未经过提取的溶样效果对比
    1—未经过索氏提取的样品SY-1溶液,2—经过索氏提取的样品SY-1溶液。
    Figure  1.  Comparison of sample dissolution effect between the extracted and unextracted samples
    表  1  经过提取和未经过提取的汞和砷的测定结果对比
    Table  1.  Comparison of analytical results of Hg and As in the extracted and unextracted samples
    样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg)
    未经过提取 经过提取 未经过提取 经过提取
    SY-1 0.078 0.065 0.105 19.3 24.4
    SY-2 0.134 0.044 0.114 16.4 26.5
    SY-3 0.033 0.076 0.108 18.3 22.4
    SY-4 0.254 0.049 0.128 12.3 31.5
    下载: 导出CSV 
    | 显示表格

    在常用有机溶剂中,对原油具有高溶解度的主要有甲苯、石油醚、正己烷、氯仿、二硫化碳、二氯甲烷、辛烷、庚烷等[25-26]。通过毒性和溶解性的筛查,以石油醚、正己烷和氯仿作为提取的备选溶剂进行实验。由表 2测定结果可得,氯仿的提取能力最强,石油醚次之,正己烷最弱,所以选择氯仿作为提取剂。

    表  2  不同溶剂提取原油的结果对比
    Table  2.  Comparison of crude oil extracted by different solvents
    样品编号 氯仿
    (g)
    相对提取率
    (%)
    石油醚
    (g)
    相对提取率
    (%)
    正己烷
    (g)
    相对提取率
    (%)
    SY-1 0.0777 100 0.0748 96.3 0.0722 92.9
    SY-2 0.1336 100 0.1242 93.0 0.1205 90.2
    SY-3 0.0328 100 0.0302 92.1 0.0284 86.6
    SY-4 0.2536 100 0.2311 91.1 0.2206 87.0
    下载: 导出CSV 
    | 显示表格

    索氏提取法是一种利用虹吸效应对固体物质中的有机物进行多次提取的方法。提取温度越高,在一定时间内提取的次数越多,提取效率越高,但是溶剂的损失也越严重[27],对于本研究也会引起汞和砷的损失,进而导致测得浓度值偏低。综合考虑,将提取速度控制在3次/h,对应的水浴温度为75℃。

    索氏提取的基本原理是连续多次萃取,这就决定了萃取物含量越高的样品往往需要更长的萃取时间[28-29],因此选择原油含量最高的SY-4样品作为萃取时间实验的对象。将提取温度设置为75℃,分别测定提取时间为1、2、3、4、5、6、7、8、9和10h时样品中汞和砷的含量。由图 2测定结果得知,随着提取时间的延长,汞和砷的测定值越来越大。这主要是因为随着样品中原油越来越多地被溶剂提取分离,其中的汞和砷更多地被王水溶解。但是,当提取时间大于8h时,汞的测定值有明显下降的趋势,这是因为长时间的高温回流造成了汞的挥发损失[30],所以将提取时间设置为8h。

    图  2  不同提取时间汞和砷的测定结果
    Figure  2.  Analytical results of Hg and As at different extraction time

    对一个汞和砷含量都很低的沉积物标准物质GBW07121(砷认定值0.25mg/kg,汞认定值0.0040mg/kg)进行7次平行实验,测得汞含量分别为0.0043、0.0038、0.0068、0.0053、0.0061、0.0044、0.0046mg/kg,计算汞的方法检出限为0.003mg/kg,测得砷含量分别为0.25、0.20、0.34、0.26、0.29、0.24、0.27mg/kg,计算砷的方法检出限为0.10mg/kg。

    通过标准系列溶液的测定可得本方法在汞含量为0.010~0.50mg/kg具有良好的线性,相关系数为0.9998;在砷含量为0.25~50mg/kg具有良好的线性,相关系数为0.9998。

    对未经过提取分离、经过高氯酸处理和经过提取分离的样品SY-1分别进行7次平行实验,测得结果见表 3。对比可知,未经过提取分离的测定精密度很差,这主要是因为对于未提取的样品,在溶矿过程中,由于原油的疏水性导致许多样品漂浮在液面上方[31],随着王水的沸腾,部分样品被随机浸入溶液中,其中的汞和砷不定量地溶解出来。对于经过高氯酸处理的样品,由于部分原油组分不能被高氯酸完全碳化[32],在溶矿过程中仍有小部分样品漂浮在液面上,造成测定结果精密度较差。而经过有机溶剂的提取后,由于原油被完全分离提取,样品沉入王水底部,其中的汞和砷被王水完全溶解,方法精密度有了很大提高。

    表  3  精密度实验结果
    Table  3.  Precision tests of the method
    样品处理 元素 分次测定值(mg/kg) RSD(%)
    未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
    30.061 0.086 0.035
    33.0
    As 15.3 11.4 14.2 18.7
    17.0 20.1 9.67
    25.0
    高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
    0.089 0.094 0.071
    15.0
    As 22.1 21.6 18.7 20.7
    22.2 23.6 18.5
    9.0
    经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
    0.104 0.092 0.114
    7.3
    As 24.4 26.5 23.2 23.5
    25.6 24.1 25.9
    5.1
    下载: 导出CSV 
    | 显示表格

    对样品SY-1进行三种浓度的加标实验,测得结果见表 4。在三种不同加标浓度下,加标回收率均在92.5%以上。这说明提取过程造成汞和砷的损失较小,样品溶解完全,该方法具有良好的准确度。

    表  4  加标回收实验结果
    Table  4.  Spiked recovery tests of the method
    实验序号 元素 样品浓度
    (mg/kg)
    加标浓度
    (mg/kg)
    测得浓度
    (mg/kg)
    回收率
    (%)
    1 Hg 0.105 0.200 0.296 95.5
    As 24.4 50.0 72.4 96.0
    2 Hg 0.105 0.100 0.199 94.0
    As 24.4 25.0 48.1 94.8
    3 Hg 0.105 0.040 0.142 92.5
    As 24.4 10.0 33.8 94.0
    下载: 导出CSV 
    | 显示表格

    本文建立了用索氏提取法低温提取分离含油岩心中的原油,用50%王水溶解剩余样品,再采用原子荧光光谱测定汞和砷含量的方法。本方法避免了由于原油的疏水性造成样品与王水接触不充分、分解不完全和反应温度过高造成汞元素损失的问题,与传统方法相比较,具有精密度好、准确度高的优点,可为含油岩心中其他元素的检测提供借鉴。

  • 图  1   不同酸介质中Sn的ICP-MS测量计数

    Figure  1.   Counts of Sn measured by ICP-MS in different acids

    表  1   稀释倍数的影响s

    Table  1   Effects of dilution rate

    标准物质编号 Sn认定值
    (μg/g)
    Sn测定值(μg/g)
    稀释
    1000倍
    稀释
    5000倍
    稀释
    8000倍
    稀释
    10000倍
    稀释
    12000倍
    GBW07103 12.5 11.75 12.07 12.33 12.63 13.16
    GBW07184 152 136.8 138.9 141.6 149.9 165
    GBW07238 86.7 78.8 80.9 84.3 87.1 90.2
    GBW07240 1400 1163 1256 1347 1412 1463
    GBW07282 12700 10350 11986 12130 12650 13102
    下载: 导出CSV

    表  2   方法精密度

    Table  2   Precision tests of the method

    标准物质编号 Sn含量(μg/g) RSD
    (%)
    认定值 12次分次测定值 平均值
    GBW07103 12.5 13.89 12.36 12.08 12.99
    11.92 12.73 13.20 12.84
    12.74 11.88 12.65 12.31
    12.63 4.57
    GBW07184 152 141.2 151.0 145.2 151.1
    149.8 148.4 151.8 149.9
    148.2 155.2 158.3 148.2
    149.9 2.92
    GBW07241 1700 1625 1723 1734 1718
    1722 1702 1706 1719
    1698 1689 1723 1709
    1706 1.67
    下载: 导出CSV

    表  3   方法准确度

    Table  3   Accuracy tests of the method

    标准物质编号 Sn认定值
    (μg/g)
    本方法Sn测定值
    (μg/g)
    本方法的相对误差
    (%)
    其他方法Sn测定值
    (μg/g)
    其他方法的相对误差
    (%)
    GBW07239 33.20 32.39 2.44 31.52 5.06
    GBW07238 86.70 88.20 1.73 84.82 2.17
    GBW07311 370 366.20 1.03 365.76 1.15
    GBW07240 1400 1413 0.93 1382 1.29
    GBW07282 12700 12481 1.72 12470 1.81
    下载: 导出CSV
  • 张颖, 宫嘉辰.铝片还原-碘量法测定银锡二元合金中锡[J].有色矿冶, 2017, 33(3):59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

    Zhang Y, Gong J C.Determination of tin silver tin binary alloy by aluminum sheet reduction-iodometry[J].Non-Ferrous Mining and Metallurgy, 2017, 33(3):59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

    何小虎, 周素莲, 韦莉, 等.碘量法测定铟锡氧化物靶材废料中锡[J].冶金分析, 2013, 33(9):65-69. http://d.old.wanfangdata.com.cn/Periodical/yjfx201309014

    He X H, Zhou S L, Wei L, et al.Determination of tin in indium tin oxide target waste by iodometry[J].Metallurgical Analysis, 2013, 33(9):65-69. http://d.old.wanfangdata.com.cn/Periodical/yjfx201309014

    叶家瑜.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004.

    Ye J Y.Sample Analysis Method for Regional Geochemical Exploration[M].Beijing:Geological Publishing House, 2004.

    胡永玫.碘量法测定掺锑二氧化锡粉中锡[J].冶金分析, 2018, 38(11):66-70. http://d.old.wanfangdata.com.cn/Periodical/yjfx201811013

    Hu Y M.Determination of tin in antimony-doped tin oxide powder by iodometry[J].Metallurgical Analysis, 2018, 38(11):66-70. http://d.old.wanfangdata.com.cn/Periodical/yjfx201811013

    苏洋, 刘红英.苯芴酮-溴化十六烷基三甲基铵分光光度法测定钛铁中锡[J].冶金分析, 2015, 35(4):65-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201504013

    Su Y, Liu H Y.Determination of tin in ferrotitanium by phenylfluorone-cetyl trimethyi ammonium bromide spectrophotometry[J].Metallurgical Analysis, 2015, 35(4):65-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201504013

    谭仪文.苯芴酮-溴代十六烷基三甲胺分光光度法测定析出铅中的锡[J].中国有色冶金, 2005, 4(2):23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

    Tan Y W.Determining tin in deposited lead by benzfluorenone-bromo-hexadecyl-trimethylamine spectrophotometry[J].China Nonferrous Metallurgy, 2005, 4(2):23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

    姚建贞, 郝志红, 唐瑞玲, 等.固体发射光谱法测定地球化学样品中的高含量锡[J].光谱学与光谱分析, 2013, 33(11):3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

    Yao J Z, Hao Z H, Tang R L, et al.Determination of high content of tin in geochemical samples by solid emission spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(11):3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

    刘江斌, 武永芝.原子发射光谱法快速测定矿石中锡[J].冶金分析, 2013, 33(3):65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

    Liu J B, Wu Y Z.Rapid determination of tin in ore by atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(3):65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

    辛文芳, 李伟, 乌晓蒙.发射光谱法测多目标区域地球化学调查中银、硼、锡三元素的分析总结[J].地质与资源, 2016, 25(4):401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

    Xin W F, Li W, Wu X M.Determination of silver, boron and tin from multi-purpose regional geochemical survey by emission spectrometry[J].Geology and Resources, 2016, 25(4):401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

    胡长春, 王沿方, 陈作王.电感耦合等离子体原子发射光谱法测定锡铅合金中的锡[J].化学分析计量, 2018, 27(5):72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

    Hu C C, Wang Y F, Chen Z W.Determination of tin in tin-lead alloy by inductively coupled plasma atomic emission spectrometry[J].Chemical Analysis and Meterage, 2018, 27(5):72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

    李超, 刘英波, 韩豫萍, 等.发射光谱法测定地球化学物料中的微量银锡硼[J].云南冶金, 2018, 47(3):84-88. http://d.old.wanfangdata.com.cn/Periodical/ynyj201803014

    Li C, Liu Y B, Han Y P, et al.The determination of trace amount silver, tin, boron in geochemical materials by emission spectrography[J].Yunnan Metallurgy, 2018, 47(3):84-88. http://d.old.wanfangdata.com.cn/Periodical/ynyj201803014

    Roncevic S, Nemet I, Svedruzic L P, et al.Chemical vapour generation for tin determination in high-content calcium matrix by inductively coupled plasma atomic emission spectrometry[J].Croatica Chemica Acta, 2014, 87(1):17-22. doi: 10.5562/cca2259

    Afonso D D, Baytak S, Arslan Z.Simultaneous generation of hydrides of bismuth, lead and tin in the presence of ferricyanide and application to determination in biominerals by ICP-AES[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5):726-729. doi: 10.1039/b920280c

    Uemoto M, Nagaoka M, Fujinuma H.Interlaboratory testing for the determination of trace amounts of tin and lead in magnesium and magnesium alloys by inductively coupled plasma atomic emission spectrometry[J].Analytical Sciences, 2009, 25(5):717-721. doi: 10.2116/analsci.25.717

    陈安明.电感耦合等离子体原子发射光谱法测定碳钢及生铁中痕量砷锑铋锡铅[J].冶金分析, 2007, 27(3):68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

    Chen A M.Determination of trace As, Sb, Bi, Sn and Pb in steel and pig iron by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2007, 27(3):68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

    Seco-Gesto E M, Moreda-Pineiro A, Bermejo-Barrera A, et al.Multi-element determination in raft mussels by fast microwave-assisted acid leaching and inductively coupled plasma-optical emission spectrometry[J].Talanta, 2007, 72(3):1178-1185. doi: 10.1016/j.talanta.2007.01.009

    陈波, 胡兰, 陈园园, 等.地质样品中总锡测定方法的研究进展[J].理化检验(化学分册), 2017, 53(2):236-241. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201702026

    Chen B, Hu L, Chen Y Y, et al.Recent progress of research on methods for determination of total tin in geological samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(2):236-241. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201702026

    郝原芳, 刘新, 宋丽华, 等.电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J].岩矿测试, 2016, 35(4):378-383. doi: 10.15898/j.cnki.11-2131/td.2016.04.007

    Hao Y F, Liu X, Song L H, et al.Determination of trace cadmium and tin in lead alloys by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(4):378-383. doi: 10.15898/j.cnki.11-2131/td.2016.04.007

    罗艳, 杨侨.碱熔、分离沉淀-电感耦合等离子体质谱法快速测定地球化学样品中的锡[J].分析试验室, 2017, 36(7):827-830. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707020.htm

    Luo Y, Yang Q.Alkaline fusion, separate precipitation-inductively coupled plasma spectrometry and rapid measurement of tin from planet chemical samples[J].Chinese Journal of Analysis Laboratory, 2017, 36(7):827-830. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201707020.htm

    侯艳霞, 刘庆彬, 胡净宇, 等.电感耦合等离子体质谱法测定锡粉基体的记忆效应研究[J].冶金分析, 2015, 35(12):1-4. http://d.old.wanfangdata.com.cn/Periodical/yjfx201512001

    Hou Y X, Liu Q B, Hu J Y, et al.Study on memory effect of tin powder matrix by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2015, 35(12):1-4. http://d.old.wanfangdata.com.cn/Periodical/yjfx201512001

    王铁, 亢德华, 于媛君.电感耦合等离子体质谱法测定锰铁中痕量铅锡锑[J].冶金分析, 2013, 33(5):13-16. http://d.old.wanfangdata.com.cn/Periodical/yjfx201305003

    Wang T, Kang D H, Yu Y J.Determination of trace lead, tin and antimony in ferromanganese by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2013, 33(5):13-16. http://d.old.wanfangdata.com.cn/Periodical/yjfx201305003

    Hosick T J, Ingamells R L, Machemer S D.Determina-tion of tin in soil by continuous hydride generation and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2):263-269. doi: 10.1016/S0003-2670(02)00049-1

    Brügmann G, Berger D, Pernicka E.Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(3):437-448. doi: 10.1111/ggr.2017.41.issue-3

    Latkoczy C, Prohaska T, Stingeder G, et al.Simultaneous multi-element analysis of trace elements in soil samples by means of high-resolution inductively coupled plasma sector field mass spectrometry (SF-ICP-MS)[J].Fresenius Journal of Analytical Chemistry, 2000, 368(2-3):256-262. doi: 10.1007/s002160000432

    Duan H, Gong Z, Yang S.Online photochemical vapour generation of inorganic tin for inductively coupled plasma mass spectrometric detection[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2):410-416. doi: 10.1039/C4JA00249K

    黄超冠, 蒙义舒, 郭焕花, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J].岩矿测试, 2018, 37(1):30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    Huang C G, Meng Y S, Guo H H, et al.Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J].Rock and Mineral Analysis, 2018, 37(1):30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    王凤祥.电感耦合等离子体原子发射光谱法测定锡矿石中锡[J].冶金分析, 2017, 37(11):59-63. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711011

    Wang F X.Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(11):59-63. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711011

    黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

    Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5):468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

    刘艳花, 孙湘莉.莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J].冶金分析, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007

    Liu Y H, Sun X L.Combined determination of titanium and chromium in the samples from the flotation-metallurgy process of heavy placer in Mozambique[J].Metallurgical Analysis, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007

    王小强, 夏辉, 秦九红, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J].岩矿测试, 2017, 36(1):52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008

    Wang X Q, Xia H, Qin J H, et al.Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J].Rock and Mineral Analysis, 2017, 36(1):52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008

    李冰, 杨红霞.电感耦合等离子体质谱原理和应用[M].北京:地质出版社, 2005.

    Li B, Yang H X.Principle and Application of Inductively Coupled Plasma-Mass Spectrometry[M].Beijing:Geological Publishing House, 2005.

    杨惠玲, 夏辉, 杜天军, 等.电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J].岩矿测试, 2013, 32(6):887-892. http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    Yang H L, Xia H, Du T J, et al.Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(6):887-892. http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    张雪梅, 张勤.发射光谱法测定勘查地球化学样品中银硼锡钼铅[J].岩矿测试, 2006, 25(4):323-326. http://www.ykcs.ac.cn/article/id/ykcs_200604107

    Zhang X M, Zhang Q.Determination of silver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J].Rock and Mineral Analysis, 2006, 25(4):323-326. http://www.ykcs.ac.cn/article/id/ykcs_200604107

    杨小莉, 杨小丽, 李小丹, 等.敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J].岩矿测试, 2014, 33(3):321-326. http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32

    Yang X L, Yang X L, Li X D, et al.Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):321-326. http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32

  • 期刊类型引用(5)

    1. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 . 百度学术
    2. 蒙炳坤,李靖,周世新,淡永,张庆玉,聂国权. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源. 天然气地球科学. 2023(04): 647-655 . 百度学术
    3. 朱志勇,朱祥坤,杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试. 2020(03): 384-390 . 本站查看
    4. 高梓涵,李立武,王玉慧,曹春辉,贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用. 岩矿测试. 2019(05): 469-478 . 本站查看
    5. 尚慧. 页岩脱气实验下含气性变化特征研究. 宁波职业技术学院学报. 2018(05): 105-108 . 百度学术

    其他类型引用(2)

图(1)  /  表(3)
计量
  • 文章访问数:  1865
  • HTML全文浏览量:  617
  • PDF下载量:  85
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-12-02
  • 修回日期:  2019-03-08
  • 录用日期:  2019-04-08
  • 发布日期:  2019-04-30

目录

/

返回文章
返回