• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

蚀变粗面岩中再平衡结构黑云母的电子探针分析

聂潇, 王宗起, 陈雷, 陈浦浦, 王刚

聂潇, 王宗起, 陈雷, 陈浦浦, 王刚. 蚀变粗面岩中再平衡结构黑云母的电子探针分析[J]. 岩矿测试, 2019, 38(5): 565-574. DOI: 10.15898/j.cnki.11-2131/td.201807100081
引用本文: 聂潇, 王宗起, 陈雷, 陈浦浦, 王刚. 蚀变粗面岩中再平衡结构黑云母的电子探针分析[J]. 岩矿测试, 2019, 38(5): 565-574. DOI: 10.15898/j.cnki.11-2131/td.201807100081
NIE Xiao, WANG Zong-qi, CHEN Lei, CHEN Pu-pu, WANG Gang. Electron Microprobe Analysis of Biotite with Reequilibration Texture in Altered Trachyte[J]. Rock and Mineral Analysis, 2019, 38(5): 565-574. DOI: 10.15898/j.cnki.11-2131/td.201807100081
Citation: NIE Xiao, WANG Zong-qi, CHEN Lei, CHEN Pu-pu, WANG Gang. Electron Microprobe Analysis of Biotite with Reequilibration Texture in Altered Trachyte[J]. Rock and Mineral Analysis, 2019, 38(5): 565-574. DOI: 10.15898/j.cnki.11-2131/td.201807100081

蚀变粗面岩中再平衡结构黑云母的电子探针分析

基金项目: 

中国地质调查局地质调查项目“境外大型矿产资源基地及资源潜力评价” DD20190437

国家自然科学基金面上项目(41872092);中国地质调查局地质调查项目“境外大型矿产资源基地及资源潜力评价”(DD20190437),“矿产资源国情调查数据集成与动态更新”(DD20190613)

国家自然科学基金面上项目 41872092

“矿产资源国情调查数据集成与动态更新” DD20190613

详细信息
    作者简介:

    聂潇, 博士, 矿物学、岩石学、矿床学专业。E-mail:niexiao369@qq.com

    通讯作者:

    陈雷, 博士, 副研究员, 从事矿床地质学研究。E-mail:chenleihx@gmail.com

  • 中图分类号: P575.1

Electron Microprobe Analysis of Biotite with Reequilibration Texture in Altered Trachyte

  • 摘要: 黑云母的化学成分中蕴含着重要的成因信息,对具有交代结构的黑云母进行微区成分分析,能够精细反映交代蚀变过程中元素迁移情况,为解决矿床形成机制方面的科学问题提供矿物学证据。本文以北大巴山平利地区蚀变粗面岩中具有再平衡结构的黑云母斑晶为研究对象,进行电子探针面扫描和剖面成分分析。结果表明,斑晶内部为岩浆成因黑云母,边缘为"扩散-反应"过程所致的再平衡成因黑云母。斑晶边缘与内部相比,TiO2含量由平均5.78%降至2.22%,表明在交代蚀变过程中黑云母中Ti等高场强元素被淋滤出进入流体;而CaO含量由平均0.06%升至0.14%,F含量由平均0.60%升至0.80%,指示蚀变流体内富含Ca、F等组分。本研究揭示了粗面岩中铌矿床的形成与热液作用关系密切,成矿流体中Ca、F等组分在铌元素的迁移及富集过程中具有重要作用。
    要点

    (1) 确定了蚀变粗面岩中黑云母斑晶内部及边缘的成分变化情况。

    (2) 查明了粗面岩蚀变过程中黑云母中主要元素的地球化学行为。

    (3) 探讨了粗面岩中晚期热液流体对岩浆成因含铌矿物的交代改造过程。

    HIGHLIGHTS

    (1) The internal and edge chemical compositions of the biotite phenocrysts were determined.

    (2) The geochemical behavior of the main elements in biotite during the metasomatic alteration was investigated.

    (3) The alteration processes of the Nb-bearing magmatic minerals in the trachyte were discussed.

  • 重金属的污染已危害到生态环境和人类生命健康[1],水体中重金属离子的检测与污染治理是当今环境科学领域重要的研究课题。重金属离子的常规检测方法主要有原子吸收光谱法、原子发射光谱法、原子荧光光谱法、电感耦合等离子体质谱(ICP-MS)等[2-3]。这些检测方法对于基体复杂、高背景金属离子含量低的样品均存在干扰,测定结果的准确度低、重现性差,甚至对仪器产生损坏而无法检测。因此,在样品进行仪器测试之前进行处理尤为重要。与其他水体中重金属离子测定的样品处理方法相比,固相萃取的操作简单、效率高、重现性好、成本低及环境友好,在分离富集重金属离子方面具有重要作用[4-5]。因此,开发研制具有吸附容量大、萃取效率高和多选择性的固相萃取填料,受到了分析工作者的极大重视。

    用于重金属离子分离富集的固相萃取(SPE)填料主要有离子交换型、螯合树脂型、纳米材料型及复合型[6-7]。螯合树脂型填料是一种分子结构中含有可与金属离子的空轨道进行配位的孤对电子原子(如O、N、S、P、As、Se等)的高分子聚合物[8-9]。配位原子的性质和数量决定了其与金属离子形成配合物的稳定性,这种固相萃取填料适用于从多种金属离子共存体系中对特定离子进行选择吸附。但高聚物基质的固相萃取填料存在一些不足:机械强度低,比表面积较小,吸附容量不高,不易合成同时具有多种配位功能原子的螯合吸附材料,选择性不强。因此,对螯合树脂型填料的改进和完善工作很有现实意义。

    纳米二氧化钛具有耐高温及强酸强碱、机械强度好等优点,比表面积大,且表面具有不饱和性,对许多金属离子具有吸附能力[10-12]。但纳米二氧化钛颗粒极易团聚,极性强,在有机溶剂中分散稳定性较差。因此,使用纳米二氧化钛作为固相萃取填料时,往往达不到理想的吸附效果。目前对纳米二氧化钛固相萃取填料的改性方式有两种:一是将纳米二氧化钛表面进行修饰,以改善其性能[13-14];二是将含有配位原子的有机螯合基团接枝于其表面,形成一种新型吸附材料。采用第二种方式制得的吸附材料中的有机基团分散更加均匀,同时具有纳米材料的性质和配位原子的螯合功能[15-16],能够获得更高的金属离子吸附容量。本项目组[17]曾采用共混法制备了聚苯乙烯-甲基丙烯醛-氨基硫脲包覆纳米二氧化钛固相萃取填料,考察了其对Cr、As、Cd和Pb金属离子的吸附性能,并应用于猪肉样品消化液中这4种金属离子的萃取分离。但在实验中发现,由于纳米粒子易团聚而从分散介质中沉积出来,粒子微区相尺寸及尺寸分布不易控制,导致制备的复合材料粒子之间的组织结构会有差别,此种填料对金属离子吸附量的重现性不佳。

    本次研究通过化学反应在纳米二氧化钛表面键合氨基硫脲,制得一种新型的固相萃取填料。该填料的组成及结构均匀,同时利用配位体中N、S原子的配位作用和纳米材料的化学活性,实现了对不同Lewis酸性的重金属离子均有较强的吸附能力和良好的实验数据重现性。运用Langmuir、Freundlich等温方程和Lagergren准二级吸附方程对实验数据进行拟合分析,准确描述了吸附剂对Sb3+、Cd2+和Ba2+的吸附动力学过程。通过确定最佳的固相萃取小柱对金属离子的吸附与洗脱操作条件,应用SPE-ICP/MS联用技术测定了水样中Sb3+、Cd2+和Ba2+三种金属离子的含量。

    S-3400扫描电子显微镜(日本日立公司);NexION 350X电感耦合等离子体质谱仪(美国PerkinElmer公司);EscaLab 250Xi X射线光电子能谱仪(美国ThermoScientific公司);Spectrun one FT-IR红外光谱仪(美国PekinElmer公司);SPE固相萃取装置(美国Superlco公司);固相萃取柱柱管(管长6.6 cm,内径12.7 mm;筛板直径12.8 mm,厚度2.5 mm,孔径20 μm)。

    Sb、Cd、Ba标准溶液(国家有色金属及电子材料分析测试中心);三氯化锑(分析纯,上海展云化工有限公司);氯化镉(分析纯,天津福晨化学试剂厂);氯化钡(分析纯,天津金汇太亚化学试剂有限公司);硫代氨基脲、甲基丙烯醛、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(均为分析纯,阿拉丁试剂有限公司);聚乙烯吡咯烷酮(分析纯,天津市大茂化学试剂厂);钛酸丁酯(化学纯,天津市光复精细化工研究所);N, N-二甲基甲酰胺(分析纯,天津市凯通化学试剂有限公司)。

    实验用水为二次蒸馏水。

    取4 mL乙酸、10 mL蒸馏水和35 mL无水乙醇于200 mL烧杯中,磁力搅拌均匀。取35 mL无水乙醇、10 mL钛酸丁酯于100 mL烧杯中,滴加盐酸,使pH≤3,磁力搅拌10 min。将钛酸丁酯-乙醇溶液转移至漏斗中,缓慢滴入上述200 mL烧杯中,继续磁力搅拌30 min,将烧杯置于80℃水浴锅中,反应1 h。将反应物转移至布氏漏斗中,抽滤,将滤饼置于蒸发皿中,在100℃电热炉上烘干,转移至瓷坩埚中,在800℃高温炉中灼烧3 h,得到纳米二氧化钛。

    向三口瓶中加入2.0 g二氧化钛和30 mL丙酮,超声分散10 min。将0.2 g的γ-甲基丙烯酰氧基丙基三甲氧基硅烷、5 mL蒸馏水加入三口瓶中,于60℃恒温水浴中机械搅拌反应4 h,得白色悬浊液,离心分离。将白色产物烘干。取1.0 g上述产物于三口瓶中。取0.2 g聚乙烯吡咯烷酮和0.1 g偶氮二异丁腈溶于20 mL无水乙醇后,移入三口瓶,在氮气保护下,于80℃恒温水浴中机械搅拌反应8 h。将得到的产物离心分离,烘干,备用。

    取0.5 g氨基硫脲和10 mL N, N-二甲基甲酰胺于三口瓶中,搅拌溶解,加入0.5 g上述备用产物及0.8 mL冰乙酸,在85℃恒温水浴中磁力搅拌反应4 h。将反应物中的溶剂蒸干,用无水乙醇洗涤3次,烘干,得到纳米TiO2/TSC复合固相萃取填料,备用。

    将固相萃取小柱管和筛板用甲醇净洗,晾干后用推杆将筛板置于小柱底端,通过长颈漏斗将0.1 g固相萃取填料填于柱管中,并轻敲漏斗使填料上表面平齐,用推杆将上端筛板装入小柱中,并用力压实,制得固相萃取小柱,备用。

    标准溶液的配制:分别取5、10、20、40、80、120、160 μL质量浓度为100 mg/L的Sb3+、Cd2+和Ba2+标准溶液于100 mL容量瓶中,加水定容,得到Sb3+、Cd2+和Ba2+浓度为5、10、20、40、80、120、160 μg/L的混合系列标准溶液,备用于制作分析标准曲线。

    吸附实验溶液的配制:分别取18.7 mg氯化锑、20.3 mg氯化镉和17.8 mg氯化钡于烧杯中,用水溶解后转移至1000 mL容量瓶中,加水定容,得到Sb3+、Cd2+、Ba2+浓度均为10 mg/L的混合溶液,备用于吸附容量试验。

    取10 mg/L混合溶液10 mL于1000 mL容量瓶中,加水定容,得到Sb3+、Cd2+、Ba2+浓度均为100 μg/L的混合溶液,备用于吸附性能条件实验。

    洗脱液配制:取35 mL 65%硝酸于100 mL容量瓶中,加2.5 mL三乙醇胺,用水定容。

    固相萃取小柱吸附金属离子的回收率计算公式:

    $ S = 100 \times \frac{{{C_{\rm{x}}}}}{{{C_0}}} $

    (1)

    式中:S—重金属离子的回收率(%);Cx—洗脱液中金属离子的浓度(μg/L);C0—原始溶液中金属离子的浓度(μg/L)。

    洗脱率计算公式:

    $ m = 100 \times \frac{{{C_{\rm{x}}}}}{{{C_0} - {C_{\rm{L}}}}} $

    (2)

    式中:m—重金属离子的洗脱率(%);Cx—洗脱液中金属离子的浓度(μg/L);C0—原始溶液中金属离子的浓度(μg/L);CL—通过固相萃取小柱溶液中金属离子的浓度(μg/L)。

    吸附量计算公式:

    $ q = \left( {{C_0} - C} \right) \times V/W $

    (3)

    式中:q—吸附剂对金属离子的吸附量(mg/g);C0—重金属离子的初始浓度(μg/L);C—吸附后流出液中重金属离子的浓度(μg/L);V—溶液的体积(mL);W—吸附剂的质量(g)。

    Langmuir吸附等温方程:

    $ \frac{{{C_{\rm e}}}}{{{q_{\rm e}}}} = \frac{{{C_{\rm e}}}}{{{Q_{\max}}}} + \frac{1}{{K{Q_{\max}}}} $

    (4)

    Freundlich吸附等温方程:

    $ \lg{q_{\rm e}} = \lg{k_{\rm F}} + \frac{1}{n}\lg{C_{\rm e}} $

    (5)

    Lagergren准二级动力学方程:

    $ \frac{t}{{{q_{ \rm t}}}} = \frac{1}{{{K_2}{q_{\rm e}}^2}} + \frac{t}{q_{\rm e}} $

    (6)

    式中:Ce为平衡浓度(mg/L);qe为平衡吸附量(mg/g);K为Langmuir吸附常数;Qmax为饱和吸附量(mg/g);kFn为Freundlich特征参数;qt为吸附平衡时间t(min)的吸附剂吸附金属离子的容量(mg/g);K2是二级动力学方程的速率常数。

    图 1a为表面键合配位体二氧化钛固相萃取填料的红外光谱图。3372.69 cm-1处为N—H伸缩振动吸收峰。3073.18 cm-1处为不饱和C—H伸缩振动吸收峰,2929.88 cm-1和2856.08 cm-1处为饱和C—H伸缩振动吸收峰。2054.09 cm-1处为材料表面吸附CO2吸收,1651.67 cm-1处为C=N伸缩振动吸收峰,1201.95 cm-1处为C=S伸缩振动吸收峰。

    图  1  表面键合配位体二氧化钛的(a)红外光谱和(b)X射线衍射分析图谱
    Figure  1.  Infrared Spectroscopy (a) and X-ray Diffraction (b) spectra of nanometer TiO2 grafted ligands

    图 1b为纳米二氧化钛和固相萃取填料的X射线衍射图谱。锐钛型二氧化钛在低温下稳定,温度达到610℃时则开始缓慢转化为金红石,915℃时可完全转化为金红石型。衍射峰表明,纳米二氧化钛的晶型为锐钛矿与金红石相共存,表面接枝改性后没有改变二氧化钛的晶体结构。

    图 2为表面键合配位体二氧化钛固相萃取填料表面N、S元素的X射线光电子能谱图谱。由图 2可知,N 1s拟合后得到三个峰,结合能位置在398.75 eV处的拟合峰对应于N=S基团,结合能位置在399.55 eV处的拟合峰对应于N—C基团,结合能位置在400.43 eV处的拟合峰对应于N—H基团。S 2p拟合后得到两个峰,结合能位置在161.52 eV与162.81 eV处的拟合峰均对应于C=S基团。表明材料表面共存氨基硫脲纳米二氧化钛活性位点。

    图  2  固相萃取填料表面N、S元素的X射线光电子能谱分析图谱
    Figure  2.  X-ray Photoelectron Spectroscopy spectra of N and S elements on the packing surface

    通过扫描电镜分别对本文制备的表面键合氨基硫脲配位体的二氧化钛及按文献[17]采用共混法制备的聚苯乙烯-甲基丙烯醛-氨基硫脲包覆纳米二氧化钛的形貌进行观察(图 3)。由图 3a可见,表面键合氨基硫脲配位体二氧化钛固相萃取填料粒子直径约为200~300 nm,分布较为均匀;由图 3b可见,聚苯乙烯-甲基丙烯醛-氨基硫脲包覆纳米二氧化钛粒子直径约为100~800 nm,分布不均匀。

    图  3  表面键合配位体二氧化钛(a)和聚合物包覆纳米二氧化钛(b)的扫描电镜图
    Figure  3.  Scanning Electron Microscope photos of nanometer TiO2 grafted ligands (a) and coated with polymer (b)

    在ICP-MS工作条件下,分别测定不同浓度标准溶液中Sb3+、Cd2+、Ba2+的计数值,以浓度为横坐标,计数率为纵坐标,绘制标准曲线。Sb3+的标准曲线的线性回归方程为:Y=676.32C-4704.8,R2=0.9958;Cd2+的标准曲线的线性回归方程为:Y=42173C-46758,R2=0.9985;Ba2+的标准曲线的线性回归方程为:Y=10201C-102857,R2=0.9959。用于测定各项实验中三种离子浓度。

    将100 mL 100 μg/L混合金属离子溶液用氨水调节至pH=7,以不同速度通过固相萃取小柱,待小柱内溶液抽至近干,用10 mL 5 mol/L硝酸+0.25 mL三乙醇胺洗脱液以0.5 mL/min流速过萃取小柱,洗脱重金属离子,用水定容至100 mL。用ICP-MS测定洗脱溶液中Sb3+、Cd2+和Ba2+的浓度,根据公式(1)计算各金属离子回收率。

    流速对回收率的影响见表 1。表明随着流速增加,金属离子的回收率逐渐降低。当流速为0.5 mL/min时,Sb3+、Cd2+、Ba2+回收率分别为97.94%、95.65%、94.04%。

    表  1  流速对金属离子回收率的影响
    Table  1.  The influence of velocity on recovery rate of metal ions
    金属离子 不同流速下金属离子的回收率(%)
    0.5 mL/min 1.0 mL/min 1.5 mL/min 2.0 mL/min
    Sb3+ 97.94 96.03 92.18 85.43
    Cd2+ 95.65 94.44 90.57 86.74
    Ba2+ 94.04 93.41 90.56 85.05
    下载: 导出CSV 
    | 显示表格

    金属离子与配位体所形成的配合物的稳定性与溶液的酸度有关;纳米二氧化钛的等电点是6.2,当溶液的pH值高于金属阳离子的等电点时,氧化物表面被羟基覆盖而显负电性,金属阳离子才能被吸附。取100 mL 100 μg/L的Sb3+、Cd2+、Ba2+混合溶液,用盐酸和氨水调节pH值,在最佳流速下经过固相萃取小柱萃取,洗脱后用ICP-MS测定浓度,计算回收率。结果显示,随着pH的增加,固相萃取填料对三种金属离子的吸附率均逐渐升高,当pH=7时,回收率达到最大值。

    取100 mL 100 μg/L混合金属离子通过固相萃取小柱,使用不同类型洗脱液对金属离子进行洗脱,洗脱液用水定容到100 mL,用ICP-MS检测重金属离子浓度,根据公式(2)计算洗脱率,实验数据见表 2。可见,以10 mL、5 mol/L硝酸和0.25 mL三乙醇胺混合作为洗脱剂时,Sb3+、Cd2+、Ba2+的洗脱率分别为98.43%、98.28%、99.07%。

    表  2  洗脱剂对金属离子洗脱率的影响
    Table  2.  The influence of the elution liquid on recovery rate of metal ions
    洗脱剂 金属离子回收率(%)
    Sb3+ Cd2+ Ba2+
    10 mL 1 mol/L硝酸 88.45 89.92 90.94
    10 mL 3 mol/L硝酸 92.46 91.54 93.26
    10 mL 5 mol/L硝酸 95.03 96.05 96.72
    10 mL 1 mol/L硝酸+0.25 mL三乙醇胺 91.78 92.65 92.82
    10 mL 3 mol/L硝酸+0.25 mL三乙醇胺 94.43 96.91 96.09
    10 mL 5 mol/L硝酸+0.25 mL三乙醇胺 98.43 98.28 99.07
    下载: 导出CSV 
    | 显示表格

    在30℃下,以表面键合配位体二氧化钛固相萃取填料对初始浓度分别为5、10、15、20、30、40 mg/L的Sb3+、Cd2+、Ba2+进行吸附,分别用Langmuir方程和Freundlich方程进行拟合。在三种离子浓度均为10 mg/L时,在10~90 min内制作吸附量-时间关系曲线,并用Lagergren二级吸附方程进行拟合。拟合结果表明,Langmuir方程拟合效果优于Freundlich方程。由Langmuir方程计算的饱和吸附量分别为13.9 mg/g、12.9 mg/g和11.2 mg/g,与实验结果基本符合,也说明二氧化钛表面键合配位体固相萃取填料对Sb3+、Cd2+、Ba2+的吸附属于单分子层吸附[18]。由Langmuir方程计算得到的吸附常数K值说明二氧化钛表面键合配位体固相萃取填料易于吸附Sb3+、Cd2+和Ba2+。由Freundlich方程得到的n值也可证明二氧化钛表面键合配位体固相萃取填料易于吸附三种离子。用Lagergren准二级动力学方程进行拟合,线性相关系数均高于0.99,吸附符合准二级动力学反应,说明吸附过程为化学吸附[19]

    取0.5 mL的10 mg/L混合离子储备液,加入到盛有20、40、60、100、120、140、160 mL去离子水的烧杯中。在pH=7,流速为0.5 mL/min条件下经固相萃取小柱萃取,用10 mL 5 mol/L硝酸和0.25 mL三乙醇胺的混合溶液洗脱,将洗脱液定容到100 mL,计算金属离子回收率。以金属离子回收率为纵坐标,流过小柱的体积为横坐标绘制穿透曲线。实验结果表明试样过柱体积应小于100 mL。

    纳米粒子表面原子能够与金属离子以静电作用等方式相结合,对一些金属离子具有很强的吸附能力。二氧化钛的等电点为6.2,当pH>6.2时,表面被羟基覆盖带负电,也可以吸附带正电的重金属离子。纳米粒子表面原子与处于晶体内部的原子所受力场有很大的不同。内部原子所受作用力受力对称,其价键是饱和的;而表面原子受力为与其邻近的内部原子的非对称价键力和其他原子的远程范德华力,其裸露在外的部分没有力的作用,受到的作用力不对称,其价键是不饱和的,存在与外界原子键合的倾向,而使得纳米粒子发生团聚,由于颗粒团聚又影响了其活性,导致对重金属离子的吸附容量不高。

    在纳米二氧化钛表面接枝含N、S配位原子的有机官能团,一方面对粒子之间的团聚起到阻碍作用;另一方面增加了对金属离子的配位吸附功能。根据软硬酸碱理论[20],硬酸与硬碱结合,软酸与软碱结合,生成的酸碱配合物稳定性高。硬酸与硬碱生成的化合物主要具有离子键的特征,软酸与软碱生成的化合物主要具有共价健的特征。氮原子属于中间配体,硫原子属于软配体,可以与Sb3+(Lewis交界酸)、Cd2+(Lewis软酸)形成稳定配合物,Ba2+(Lewis硬酸)的吸附是基于纳米二氧化钛的静电作用及氧原子的配位作用。二氧化钛表面键合配位体固相萃取填料充分利用了配位体中配位原子的配合作用和纳米材料的化学活性,从而提高了吸附容量。

    为了评价表面键合配位体纳米二氧化钛的吸附性能,将之与聚苯乙烯-甲基丙烯醛-氨基硫脲包覆纳米二氧化钛及纳米二氧化钛进行实验对比。这三种材料制成固相萃取小柱,在相同条件下,分别将含有Sb3+、Cd2+、Ba2+的混合溶液进行过柱、洗脱和测试,重复6次,计算平均回收率和重现性,结果见表 3。由表 3中的数据可见,表面键合配位体纳米二氧化钛的吸附回收率和重现性均最佳(RSD<5.5%);聚苯乙烯-甲基丙烯醛-氨基硫脲包覆纳米二氧化钛的吸附回收率略低于前者,但重现性较差(RSD为9.9%~11.6%);纳米二氧化钛的吸附回收率最低,重现性也较差(RSD为8.8%~11.5%)。聚合物包覆纳米二氧化钛过程中,由于粒子分散不均匀而导致包覆后的颗粒之间的组织结构有差别;纳米二氧化钛填料的吸附方式单一,颗粒易团聚;而有机物在纳米二氧化钛表面进行化学反应,对于每个粒子的机会都是等同的,随着反应的进行,纳米粒子间的分散度也不断增大,最终形成颗粒结构相同、分散均匀的表面键合配位体纳米二氧化钛复合材料。

    表  3  固相萃取填料的吸附性能对比
    Table  3.  A comparison of adsorption performance of the SPE packings
    填料 回收率(%) RSD(%)
    Sb3+ Cd2+ Ba2+ Sb3+ Cd2+ Ba2+
    表面键合配位体二氧化钛 97.94 95.65 94.04 5.4 4.7 5.1
    聚合物包覆纳米二氧化钛 96.87 94.23 93.67 10.2 11.6 9.9
    纳米二氧化钛 88.33 85.26 86.84 11.5 9.3 8.8
    下载: 导出CSV 
    | 显示表格

    取江水、湖水和地下水各1 L,用中速滤纸过滤,加硝酸至pH为1~2,在室温下超声振荡30 min,取100 mL水样,调节pH=7,以0.5 mL/min流速通过纳米TiO2/TSC复合固相萃取小柱,待小柱内溶液抽至近干,用10 mL 5 mol/L硝酸+0.25 mL三乙醇胺洗脱液以0.5 mL/min流速洗脱,用水定容至10 mL,经0.45 μm滤膜过滤后用ICP-MS测定溶液中Sb3+、Cd2+和Ba2+的浓度。

    以纯水做空白溶液重复测定20次,计算标准偏差,以标准偏差的3倍除以Sb3+、Cd2+、Ba2+标准曲线的斜率计算仪器检出限,再除以浓缩倍数和回收率即得到方法的检出限。各类水样中Sb3+、Cd2+、Ba2+的含量测定值及方法检出限见表 4。Sb3+、Cd2+和Ba2+的方法检出限分别为0.061 μg/L、0.013 μg/L和0.075 μg/L。

    表  4  样品测定结果(n=6)及检出限(n=20)
    Table  4.  Analytical results (n=6) and detection limits (n=20) of the sample
    样品 Sb3+测定值(μg/L) Cd2+测定值(μg/L) Ba2+测定值(μg/L)
    江水 0.42 0.23 2.56
    湖水 1.53 3.01 10.6
    地下水 0.11 0.14 0.87
    加标回收率(%) 97.6~106.0 98.8~103.0 99.2~101.0
    检出限(μg/L) 0.061 0.013 0.075
    下载: 导出CSV 
    | 显示表格

    本研究将纳米二氧化钛经γ-甲基丙烯酰氧基丙基三甲氧基硅烷表面修饰后,键合醛基,接枝氨基硫脲,制得的纳米TiO2/TSC复合固相萃取填料的粒子尺寸为200~300 nm,对Sb3+、Cd2+、Ba2+的吸附容量分别为13.9 mg/g、12.9 mg/g和11.2 mg/g,吸附回收率均大于94.0%,性能优于文献[17]采用共混法制备的固相萃取填料。该固相萃取填料静态吸附Sb3+、Cd2+和Ba2+的反应符合Langmuir等温模型和Lagergren准二级动力学方程,吸附过程为化学吸附。

    该项研究提出了制备有机/无机复合型固相萃取填料的新途径,优化了固相萃取操作条件,确定了固相萃取填料静态吸附离子的机理及等温模型和动力学模型。采用SPE-ICP-MS测定Sb3+、Cd2+、Ba2+的检出限分别为0.061 μg/L、0.013 μg/L和0.075 μg/L,灵敏度高、精密度高,具有较强的理论和实际应用价值。

    致谢: 中国地质大学(北京)科学研究院电子探针实验室郝金华老师在电子探针分析实验过程中给予了大量的指导和帮助,在此表示衷心的感谢。
  • 图  1   (a) 粗面岩手标本照片(隐晶质结构,块状构造),(b)黑云母斑晶单偏光镜下照片

    Bt—黑云母;Ttn—榍石;Kfs—钾长石;Pl—斜长石。

    Figure  1.   (a)Photograph of trachyte sample (cryptocrystalline texture, massive structure), (b)Micrograph of biotite phenocryst under a polarized light

    图  2   黑云母斑晶背散射(BSE)图像和成分剖面上不同组分含量变化情况

    Bt—黑云母;Ilm—钛铁矿;Ttn—榍石;Kfs—钾长石;Ap—磷灰石;Pl—斜长石。

    Figure  2.   Backscattered electron images of biotite phenocrysts and corresponding compositional line profile analysis

    图  3   黑云母斑晶背散射(BSE)图像和对应Ti、Mg、Fe元素的面扫描图

    Bt—黑云母;Ilm—钛铁矿;Ttn—榍石;Kfs—钾长石;Ap—磷灰石;Pl—斜长石。

    Figure  3.   Backscattered electron images of biotite phenocrysts and corresponding compositional mapping images for element Ti, Mg and Fe

    图  4   黑云母成分10×TiO2-FeO*-MgO图解(据文献[14])

    Figure  4.   10×TiO2-FeO*-MgO diagram of biotite (Reference[14])

    表  1   黑云母斑晶电子探针分析结果

    Table  1   Representative electron microprobe analysis of biotite phenocrysts

    成分 斑晶内部 斑晶边缘
    TC-B3-20(7个分析点) TC-B3-30(6个分析点) 平均值
    (%)
    TC-B3-20(6个分析点) TC-B3-30(4个分析点) 平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    SiO2 34.62 36.02 35.30 34.00 35.56 34.89 35.10 35.81 36.36 36.11 35.72 36.56 36.25 36.18
    TiO2 4.72 7.39 5.93 4.65 7.14 5.62 5.78 1.98 2.19 2.11 2.23 2.44 2.33 2.22
    Al2O3 12.27 13.30 12.63 12.26 13.09 12.60 12.62 13.90 14.59 14.33 13.53 13.86 13.71 14.02
    FeOT 21.30 22.50 21.82 20.32 21.52 21.17 21.50 22.06 23.08 22.48 21.65 22.36 21.98 22.23
    MnO 0.97 1.28 1.16 1.25 2.00 1.51 1.34 1.21 1.36 1.31 1.23 1.43 1.33 1.32
    MgO 8.92 9.50 9.19 9.22 10.27 9.82 9.51 9.14 9.52 9.32 9.47 9.85 9.73 9.53
    CaO 0.05 0.22 0.11 0.00 0.00 0.00 0.06 0.06 0.33 0.16 0.05 0.14 0.11 0.14
    Na2O 0.13 0.26 0.21 0.20 0.31 0.25 0.23 0.27 0.47 0.35 0.22 0.33 0.28 0.32
    K2O 8.78 9.23 8.99 8.71 9.35 9.11 9.05 8.85 9.32 9.12 9.18 9.59 9.42 9.27
    F 0.33 0.68 0.48 0.68 0.73 0.71 0.60 0.62 0.83 0.70 0.82 0.98 0.90 0.80
    总量 94.25 96.57 95.34 94.70 95.22 94.96 95.15 94.82 95.91 95.27 94.75 95.49 95.11 95.19
    XFeO* 0.70 0.73 0.72 0.69 0.71 0.70 0.71 0.71 0.72 0.72 0.70 0.71 0.71 0.72
    基于22个O原子计算阳离子数
    成分 斑晶内部 斑晶边缘
    TC-B3-20(7个分析点) TC-B3-30(6个分析点) 平均值
    (%)
    TC-B3-20(6个分析点) TC-B3-30(4个分析点) 平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    最小值
    (%)
    最大值
    (%)
    平均值
    (%)
    Si 5.45 5.56 5.51 5.37 5.54 5.48 5.50 5.58 5.69 5.64 5.63 5.70 5.67 5.66
    Al 2.22 2.45 2.33 2.25 2.44 2.33 2.33 2.31 2.42 2.36 2.30 2.37 2.33 2.35
    Al 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.24 0.33 0.28 0.18 0.23 0.20 0.24
    Ti 0.56 0.85 0.70 0.55 0.84 0.66 0.68 0.23 0.26 0.25 0.26 0.29 0.27 0.26
    Fe 2.76 2.95 2.85 2.64 2.84 2.78 2.82 2.88 3.01 2.94 2.82 2.95 2.88 2.91
    Mn 0.13 0.17 0.15 0.16 0.27 0.20 0.18 0.16 0.18 0.17 0.16 0.19 0.18 0.18
    Mg 2.06 2.24 2.14 2.14 2.40 2.30 2.22 2.14 2.22 2.17 2.22 2.30 2.27 2.22
    Ca 0.01 0.04 0.02 0.00 0.00 0.00 0.01 0.01 0.06 0.03 0.00 0.02 0.01 0.02
    Na 0.04 0.08 0.06 0.06 0.09 0.08 0.07 0.08 0.14 0.10 0.07 0.10 0.08 0.09
    K 1.74 1.84 1.79 1.75 1.87 1.82 1.81 1.77 1.85 1.82 1.84 1.90 1.88 1.85
    XMg 0.41 0.44 0.43 0.44 0.46 0.45 0.44 0.42 0.43 0.42 0.43 0.45 0.44 0.43
    T(℃) 737 792 766 738 792 763 765 601 622 614 625 645 635 625
    注:FeOT表示电子探针测试的全铁含量;XFeO*=FeO*/(FeO*+MgO);FeO*=FeOT+MnO;XMg=Mg/(Mg+Fe)。T(℃)计算据公式:T={[ln(Ti)-a-c×(XMg)3]/b}0.333[21]
    下载: 导出CSV
  • 陈雷, 闫臻, 王宗起, 等.陕西山阳-柞水矿集区燕山期岩体矿物学特征:对岩浆性质及成矿作用的指示[J].地质学报, 2014, 88(1):109-133. doi: 10.3969/j.issn.1006-0995.2014.01.026

    Chen L, Yan Z, Wang Z Q, et al.Mineralogical characteristics of the Yanshanian granitic rocks in Shanyang-Zhashui ore concentration area:An indicator for the magmatic nature and metallogenesis[J]. Acta Geologica Sinica, 2014, 88(1):109-133. doi: 10.3969/j.issn.1006-0995.2014.01.026

    Bao B, Webster J D, Zhang D H, et al.Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China:Implications for the behavior of halogens in mineralized porphyry systems[J]. Ore Geology Reviews, 2016, 79:443-462. doi: 10.1016/j.oregeorev.2016.05.024

    王勇, 唐菊兴, 王立强.西藏邦铺斑岩钼(铜)矿床钾硅酸盐化热液黑云母电子探针分析及早期成矿流体特征[J].岩矿测试, 2016, 35(4):440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

    Wang Y, Tang J X, Wang L Q.EMPA analysis of hydrothermal biotite from the Bangpu porphyry Mo-Cu deposit of Tibet, China and the characteristics of early ore-forming fluids[J]. Rock and Mineral Analysis, 2016, 35(4):440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

    杜佰松, 申俊峰, 秦玉良, 等.甘肃省沃尔给花岗岩体中黑云母的成分对其岩体碱度的响应及成岩成矿意义[J].现代地质, 2017, 31(4):672-682. doi: 10.3969/j.issn.1000-8527.2017.04.003

    Du B S, Shen J F, Qin Y L, et al.Chemical composition of biotites responding to basicity of Woergei granite intrusion in Gansu Province and implications for petrogenesis and mineralization[J]. Geoscience, 2017, 31(4):672-682. doi: 10.3969/j.issn.1000-8527.2017.04.003

    Moore W J, Czamanske G K.Compositions of biotites from unaltered and altered monzonitic rocks in the Bingham Mining District, Utah[J]. Economic Geology, 1973, 68(2):269-274. doi: 10.2113/gsecongeo.68.2.269

    Jacobs D C, Parry W T.Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico[J]. Economic Geology, 1979, 74(4):860-887. doi: 10.2113/gsecongeo.74.4.860

    傅金宝.斑岩铜矿中黑云母的化学组成特征[J].地质与勘探, 1981, 9(1):16-19. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198109002.htm

    Fu J B.Chemical composition of biotite in porphyry copper deposits[J]. Geology and Prospecting, 1981, 9(1):16-19. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198109002.htm

    Selby D, Nesbitt B E.Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada:Evaluation of magmatic and hydrothermal fluid chemistry[J]. Chemical Geology, 2000, 171(1-2):77-93. doi: 10.1016/S0009-2541(00)00248-5

    袁继海, 詹秀春, 樊兴涛, 等.硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展[J].岩矿测试, 2011, 30(2):122-127. http://www.ykcs.ac.cn/article/id/ykcs_20110202

    Yuan J H, Zhan X C, Fan X T, et al.Development of microanalysis of trace elements in sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(2):122-127. http://www.ykcs.ac.cn/article/id/ykcs_20110202

    Nie X, Shen J, Liu H, et al.Geochemistry of pyrite from the Gangcha gold deposit, West Qinling Orogen, China:Implications for ore genesis[J]. Acta Geologica Sinica (English Edition), 2017, 91(6):2164-2179. doi: 10.1111/1755-6724.13456

    李秋立, 杨蔚, 刘宇, 等.离子探针微区分析技术及其在地球科学中的应用进展[J].矿物岩石地球化学通报, 2013, 32(3):310-327. doi: 10.3969/j.issn.1007-2802.2013.03.004

    Li Q L, Yang W, Liu Y, et al.Ion microprobe microanalytical techniques and their applications in earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3):310-327. doi: 10.3969/j.issn.1007-2802.2013.03.004

    侯江龙, 王登红, 王成辉, 等.河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究[J].岩矿测试, 2017, 36(5):529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056

    Hou J L, Wang D H, Wang C H, et al.Study on the types, and metallogenic and diagenetic environment of tourmaline from the Zhongzuo pegmatite veins in Quyang County, Hebei Province[J]. Rock and Mineral Analysis, 2017, 36(5):529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056

    代鸿章, 王登红, 刘丽君, 等.电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J].岩矿测试, 2018, 37(3):336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

    Dai H Z, Wang D H, Liu L J, et al.Study on emerald-level beryl from the Zhen'an W-Be polymetallic deposit in Shaanxi Province by electron probe microanalyzer and micro X-ray diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3):336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

    Nachit H, Ibhi A, Abia E H, et al.Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus-Géoscience, 2005, 337(16):1415-1420. doi: 10.1016/j.crte.2005.09.002

    李洁, 钟军伟, 于洋, 等.赣南西华山花岗岩的云母成分特征及其对岩浆演化与成矿过程的指示[J].地球化学, 2013, 42(5):393-404. http://d.old.wanfangdata.com.cn/Periodical/dqhx201305001

    Li J, Zhong J W, Yu Y, et al.Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China[J]. Geochimica, 2013, 42(5):393-404. http://d.old.wanfangdata.com.cn/Periodical/dqhx201305001

    聂潇, 尹京武, 陈浦浦, 等.河南栾川三道庄钼钨矿床石榴石的矿物学特征研究[J].电子显微学报, 2014, 33(2):108-116. doi: 10.3969/j.1000-6281.2014.02.003

    Nie X, Yin J W, Chen P P, et al.Skarn mineral characteristics of Sandaozhuang Mo-W deposit and their geological significance[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(2):108-116. doi: 10.3969/j.1000-6281.2014.02.003

    徐海明, 方景玲, 樊莉, 等.陕西平利县朱家院鹰嘴岩铌矿地质特征[J].地质论评, 2016, 62(增刊1):413-414. http://d.old.wanfangdata.com.cn/Periodical/dzlp2016z1201

    Xu H M, Fang J L, Fan L, et al.The geology of Yingzuiyan niobium deposit at Pingli County, Shaanxi Province[J]. Geological Review, 2016, 62(Supplement 1):413-414. http://d.old.wanfangdata.com.cn/Periodical/dzlp2016z1201

    杨成, 刘成新, 刘万亮, 等.南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J].岩石矿物学杂志, 2017, 36(5):605-618. doi: 10.3969/j.issn.1000-6524.2017.05.002

    Yang C, Liu C X, Liu W L, et al.Geochemical characteristics of trachyte and Nb mineralization process in Tianbao township, Township, Zhuxi County, Southern Qinling[J]. Acta Petrologica Et Mineralogica, 2017, 36(5):605-618. doi: 10.3969/j.issn.1000-6524.2017.05.002

    朱江, 程昌红, 王连训, 等.南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识[J].岩石矿物学杂志, 2017, 36(5):681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008

    Zhu J, Cheng C H, Wang L X, et al.Some new knowledge concerning Silurian alkaline magmatism and related Nb-REE mineralization in the Zhushan Region, South Qinling[J]. Acta Petrologica Et Mineralogica, 2017, 36(5):681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008

    朱伟, 郑婧, 刘新会, 等.陕西镇坪双河口铌矿床地质地球化学特征与成因探讨[J].地质与勘探, 2018(5):929-939. doi: 10.3969/j.issn.0495-5331.2018.05.005

    Zhu W, Zheng Q, Liu X H, et al.Geological and geochemical characteristics and genesis of the Shuanghekou niobium deposit in South Qinling, Shaanxi[J]. Geology and Exploration, 2018(5):929-939. doi: 10.3969/j.issn.0495-5331.2018.05.005

    Henry D J, Guidotti C V, Thomson J A.The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2-3):316-328. doi: 10.2138/am.2005.1498

    Parsapoor A, Khalili M, Tepley F, et al.Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran)[J]. Ore Geology Reviews, 2015, 66:200-218. doi: 10.1016/j.oregeorev.2014.10.015

    Chen W T, Zhou M F.Hydrothermal alteration of magmatic zircon related to NaCl-rich brines:Diffusion-reaction and dissolution-reprecipitation processes[J]. American Journal of Science, 2017, 317(2):177-215. doi: 10.2475/02.2017.02

    Eggleton R A, Banfield J F.The alteration of granitic biotite to chlorite[J]. American Mineralogist, 1985, 70(9-10):902-910. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_72a03e4ba33cf0c5b9944e122f069b62

    Corfu F, Stone D.The significance of titanite and apatite U-Pb ages:Constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, Northwestern Superior Province, Canada[J]. Geochimica et Cosmochimica Acta, 1998, 62(17):2979-2995. doi: 10.1016/S0016-7037(98)00225-7

    Broska I, Harlov D, Tropper P, et al.Formation of mag-matic titanite and titanite-ilmenite phase relations during granite alteration in the Tribec Mountains, Western Carpathians, Slovakia[J]. Lithos, 2007, 95(1):58-71. http://www.sciencedirect.com/science/article/pii/S0024493706002131

    潘会彬, 康志强, 杨锋, 等.粤北大宝山次英安斑岩中副矿物榍石的初步研究[J].地质科技情报, 2014, 33(3):44-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201403005

    Pan H B, Kang Z Q, Yang F, et al.Preliminary study on the accessory mineral of sphene in dacite porphyry from Dabaoshan, Northern Guangdong Province[J]. Geological Science and Technology Information, 2014, 33(3):44-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201403005

    Cuney M, Marignac C, Weisbrod A.The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87:1766-1794. doi: 10.2113/gsecongeo.87.7.1766

    Chevychelov V Y, Zaraisky G, Borisovskii S, et al.Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid:Fractionation of Ta and Nb and conditions of ore formation in rare-metal granites[J]. Petrology, 2005, 13(4):305-321.

    Zaraisky G P, Korzhinskaya V, Kotova N.Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550℃ and 50 to 100MPa[J]. Mineralogy and Petrology, 2010, 99:287-300. doi: 10.1007/s00710-010-0112-z

    Timofeev A, Migdisov A A, Williams-Jones A.An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2015, 158:103-111. doi: 10.1016/j.gca.2015.02.015

    Linnen R L.The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F:Constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7):1013-1025. doi: 10.2113/gsecongeo.93.7.1013

    陈浦浦, 尹京武, 聂潇, 等.陕西省平利县朱家院碱性岩中易解石矿物学研究[J].电子显微学报, 2014, 33(1):46-54. doi: 10.3969/j.1000-6281.2014.01.008

    Chen P P, Yin J W, Nie X, et al.Study on the mineralogy of aeschynite from alkaline trachyte in Zhujiayuan of Pingli County, Shaanxi Province[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(1):46-54. doi: 10.3969/j.1000-6281.2014.01.008

    段湘益, 王海元.陕西省安康某地区铌矿地质地球化学特征[J].矿产与地质, 2007, 21(6):657-661. doi: 10.3969/j.issn.1001-5663.2007.06.010

    Duan X Y, Wang H Y.Geological and geochemical characteristics of the Nb deposit in some area of Ankang, Shannxi[J]. Mineral Resources and Geology, 2007, 21(6):657-661. doi: 10.3969/j.issn.1001-5663.2007.06.010

    Linnen R L, Samson I M, Williams-Jones A E, et al.Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[J]. Treatise on Geochemistry, 2014, 13:543-568. http://d.old.wanfangdata.com.cn/Periodical/kcdz201802005

    Salvi S, Fontan F, Monchoux P, et al.Hydrothermal mo-bilization of high field strength elements in alkaline igneous systems:Evidence from the Tamazeght Complex (Morocco)[J]. Economic Geology, 2000, 95(3):559-576.

    王汝成, 谢磊, 诸泽颖, 等.云母:花岗岩——伟晶岩稀有金属成矿作用的重要标志矿物[J].岩石学报, 2019, 35(1):69-75. http://d.old.wanfangdata.com.cn/Conference/8301020

    Wang R C, Xie L, Zhu Z Y, et al.Mica:Important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica, 2019, 35(1):69-75. http://d.old.wanfangdata.com.cn/Conference/8301020

    Williams-Jones A E, Samson I M, Olivo G R.The ge-nesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico[J]. Economic Geology, 2000, 95(2):327-341. doi: 10.2113/gsecongeo.95.2.327

  • 期刊类型引用(4)

    1. 李艳香,陈玖妍,韩荣,栾日坚,张玉强,吴来东,祁志冲. 磷酸盐对纳米二氧化钛吸附水体中重金属离子行为的影响和机理分析. 岩矿测试. 2023(02): 317-325 . 本站查看
    2. 吴莉莉,曹洪印. 二氧化钛对Cu~(2+)的吸附研究. 化工时刊. 2022(05): 19-22 . 百度学术
    3. 申书昌,彭程,王荻. 蒙脱土表面键合配位体固相萃取填料的制备及其对重金属离子的吸附性能. 应用化学. 2019(06): 717-725 . 百度学术
    4. 王荻,申书昌,辛建娇,郑建华,王文波,隋丽丽. 活性炭表面键合配位体固相萃取填料的制备及其对水中重金属离子吸附性能的研究. 黑龙江大学自然科学学报. 2019(05): 590-596 . 百度学术

    其他类型引用(3)

图(4)  /  表(1)
计量
  • 文章访问数:  2709
  • HTML全文浏览量:  592
  • PDF下载量:  54
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2019-03-04
  • 录用日期:  2019-07-15
  • 发布日期:  2019-08-31

目录

/

返回文章
返回