• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究

张莉娟, 安树清, 徐铁民, 张楠, 魏双, 方蓬达

张莉娟, 安树清, 徐铁民, 张楠, 魏双, 方蓬达. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. DOI: 10.15898/j.cnki.11-2131/td.201712180194
引用本文: 张莉娟, 安树清, 徐铁民, 张楠, 魏双, 方蓬达. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. DOI: 10.15898/j.cnki.11-2131/td.201712180194
Li-juan ZHANG, Shu-qing AN, Tie-min XU, Nan ZHANG, Shuang WEI, Peng-da FANG. Study on Influcing Factors for Reduction Capacity of Gray-Green Sandstone in Ordos Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403. DOI: 10.15898/j.cnki.11-2131/td.201712180194
Citation: Li-juan ZHANG, Shu-qing AN, Tie-min XU, Nan ZHANG, Shuang WEI, Peng-da FANG. Study on Influcing Factors for Reduction Capacity of Gray-Green Sandstone in Ordos Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403. DOI: 10.15898/j.cnki.11-2131/td.201712180194

鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究

基金项目: 

中国地质调查局地质调查工作项目“鄂尔多斯盆地铀矿调查关键方法研究”(12120115013501)

中国地质调查局地质调查工作项目“鄂尔多斯盆地铀矿调查关键方法研究” 12120115013501

详细信息
    作者简介:

    张莉娟, 高级工程师, 从事岩石矿物的光谱分析。E-mail:zhanglij19@163.com

    通讯作者:

    安树清, 硕士, 研究员, 主要研究方向为光谱分析。E-mail:anshuq@sina.com

  • 中图分类号: O614.62;O657.31;O657.14

Study on Influcing Factors for Reduction Capacity of Gray-Green Sandstone in Ordos Sandstone-type Uranium Deposits

  • 摘要: 层间氧化型砂岩型铀矿是一种具有实际工业意义的铀矿床,在还原环境下,铀相对难迁移,有利于铀矿床的储存。亚铁离子、硫离子、黄铁矿、有机质等物质都可能对砂岩型铀矿的还原环境发挥作用。为研究鄂尔多斯地区砂岩型铀矿U(Ⅵ)的还原因素,本文对砂岩型铀矿及大量存在的灰绿色砂岩常见的还原性物质亚铁离子、硫离子、黄铁矿、钛铁矿、腐殖酸、甲烷气、氢气对U(Ⅵ)进行了常温常压下的模拟实验,利用极谱法和分光光度法分别测定U(Ⅵ)和U(Ⅳ)的含量,进而分析它们的还原能力。结果表明:亚铁离子和硫离子具有较强的还原性,黄铁矿、钛铁矿和腐殖酸的还原作用甚微,氢气和甲烷气并不参与U(Ⅵ)反应;如10 g灰绿色砂岩经蒸馏水浸泡后,得到1.1~26 μg/mL亚铁离子,没有检测出硫离子。说明灰绿色砂岩具有较强还原性的主要原因是其在地下水浸泡下产生的微量亚铁离子发挥作用,揭示了鄂尔多斯地区砂岩型铀矿大量存在的灰绿色砂岩是形成后生水成铀矿的最重要因素。
    要点

    (1) 综合研究了鄂尔多斯地区砂岩型铀矿中U(Ⅵ)的还原因素。

    (2) 对砂岩型铀矿中常见的还原性物质(亚铁离子、硫离子、黄铁矿、钛铁矿、腐殖酸、甲烷气、氢气)对U(Ⅵ)的还原能力进行了梳理。

    (3) 通过浸泡实验说明了相伴生的灰绿色砂岩中含有可以还原U(Ⅵ)的亚铁离子。

    HIGHLIGHTS

    (1) The reduction factors of U(Ⅵ) in sandstone-type uranium deposits in Ordos area were comprehensively studied.

    (2) The common reducing agents (ferric ion, sulfide ion, pyrite, ilmenite, humic acid, methane gas and hydrogen gas) in sandstone-type uranium deposits were studied for the influence on the reduction capacity of U(Ⅵ).

    (3) The immersion experiment showed that the gray-green sandstone contained ferrous ions that can reduce U(Ⅵ).

  • 铅锌矿石多以硫化矿共生,或与其他金属共生,组成复合多金属硫化矿床。矿物中伴生的钨、钼、锡、锗、硒、碲等有益组分的含量对矿床的综合评价和矿产工业开发及利用具有重要意义[1]

    对于铅锌矿石的分析,在国家标准方法GB/T 14353—2014中,钨和钼采用氢氟酸-硝酸-高氯酸体系进行样品分解,以电感耦合等离子体质谱仪(ICP-MS)测定,当溶液中共存的铜含量>5%或铅含量>10%时,对钨、钼的测定分别产生不同程度的正、负干扰,该方法通过在标准溶液中等量补偿干扰元素的方式扣除测定干扰。各类地质样品中锡的含量常低于10 μg/g,可采用固体粉末发射光谱法测定[2],但铅锌矿的含硫量高,采用电火花激发时易引起样品飞溅跳样;王铁等[3]采用5种混合酸消解锰铁中的痕量锡,但针对铅锌矿中难熔锡石矿物的分解效果难以保证。国家标准方法中,锗和硒分别以氢氟酸-硝酸-硫酸和碳酸钠-氧化锌进行样品分解,均采用原子荧光光谱法测定,此溶液体系中共存的高含量铅(320 mg/L以上)干扰锗的测定,而硒采用半熔法-沸水提取的前处理方法使进入测定体系的主量金属元素大幅度减少,基本消除了干扰。碲元素的丰度低,熔矿后通常需要分离富集,刘正等[4]采用萃取法进行样品预处理,以石墨炉原子吸收光谱法测定碲的含量。国家标准中采用共沉淀分离的方法,当硒含量高于1 μg/g时可能干扰碲的测定。可见现有分析方法中,对铅锌矿有用组分进行综合评价时各元素采用分组或单独溶矿和测定的方式,多元素无法同时分析,操作强度大、效率低,且存在不可避免的主量元素干扰,影响了分析的准确度和精密度。

    采用ICP-MS测定铅锌矿中的6种伴生元素,研究人员通常采用混酸分组处理样品。为了确保难熔元素锡完全分解,王佳翰等[5]同时使用硫酸和高氯酸高温冒烟消解,再以硝酸180℃复溶样品同时测定钨、钼、锡,样品处理时间长;非金属硒、碲含量较低,且易受主量元素干扰,陈波等[6]采用乙醇介质提高硒、碲的分析灵敏度。现有的熔矿和测定方法难以兼顾6种元素的同时、准确测定。本研究采用碱熔体系,熔矿后加入阳离子树脂交换分离钠盐,同时将造岩元素钾、铁、铝等及主量元素铅、锌从测定体系中分离,有效减小基体效应和矿石中铅的干扰,建立了以ICP-MS测定铅锌矿中的钨、钼、锡、锗、硒、碲的方法。

    iCAP Q型电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数如下:测定模式为KED模式;RF功率1150 W;等离子气流量15.0 L/min;辅助气流量1.0 L/min;雾化气流量1.0 L/min;进样泵流速为30 r/min;进样冲洗时间20 s;扫面方式为跳峰;单元素积分时间为1 s。

    过氧化钠、三乙醇胺、柠檬酸为分析纯,三乙醇胺、柠檬酸作为络合剂使用。

    柠檬酸溶液:浓度为0.8%,溶剂为水。

    732型阳离子交换树脂:在交联为7%的苯乙烯-二乙烯共聚体上带磺酸基(—SO3H)的阳离子交换树脂。

    铑(GSB04-1746-2004)、铼(GSB04-1745-2004)、硼(GSB04-1716-2004)、磷(GSB04-1741-2004)单元素标准储备溶液:浓度为1000 μg/mL,碘(GSB05-1137-1999)单元素标准溶液:浓度为100 μg/g。以上单元素标准储备溶液均由国家有色金属及电子材料分析测试中心定值,逐级稀释后配制成实验用内标液,铼、铑浓度为0.5 μg/mL,硼、磷、碘浓度为1.0 μg/mL。

    实验用水为超纯水(电阻率18.0 MΩ·cm)。

    实验样品为铜铅锌矿石标准物质,与实际样品具有相近的基体组成和主量元素含量。包括:GBW07170为西藏自治区地质矿产勘查开发局中心实验室研制的铜、铅矿石成分分析标准物质;GBW07164和GBW07167为中国地质科学院地球物理地球化学勘查研究所研制的富铜(银)矿石和铅精矿成分分析标准物质;BY0110-1为云南锡业公司研制的锌精矿成分分析标准物质,矿物类型为氧化矿;GBW07234和GBW07235为湖北地质实验研究所研制的铜矿石和铅矿石成分分析标准物质。

    称取待测矿样0.4000 g于刚玉坩埚中,用塑料勺加入2.0 g过氧化钠,坩埚置于预热至500℃的耐火板上放置5 min,再转移到升温至500℃的马弗炉中,升温至750℃,保温10 min,取出后冷却至约100℃,坩埚放入100 mL聚四氟乙烯烧杯中,加入80 mL热水(约80℃)提取,加入2 mL三乙醇胺,加入0.5 μg/mL铼内标溶液5.00 mL,搅拌均匀,取出坩埚,冷却后定容于100 mL容量瓶中,得待测液。

    搅拌过程中移取10.0 mL待测液于50 mL聚四氟乙烯坩埚中,加入0.8%柠檬酸溶液8 mL,摇匀,再加入8~9 g阳离子树脂,摇匀后于回旋振荡器上以振速150~160 r/min振荡15 min,充分离子交换,加入8 mL水,继续于振荡器上振荡20 min后,定容于50 mL容量瓶中,得测定液。

    在100 mL容量瓶中加入逐级稀释后的钨、钼、锡、锗、硒、碲标准溶液,加入2.0 g过氧化钠、内标溶液5.00 mL(内标元素浓度Re:0.5 μg/mL;B:1.0 μg/mL)和2 mL三乙醇胺,定容,摇匀,配制成钨、钼、锡、锗、硒、碲的混合标准曲线溶液,随同样品待测液(1.3.2节)制备成工作曲线溶液。各元素浓度见表 1

    表  1  钨钼锡锗硒碲标准工作溶液
    Table  1.  Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium
    混合标准溶液系列 浓度(ng/mL)
    W Mo Sn Ge Se Te
    S0 0.0 0.0 0.0 0.0 0.0 0.0
    S1 4.0 10.0 4.0 2.0 2.0 1.0
    S2 8.0 20.0 8.0 4.0 4.0 2.0
    S3 20.0 50.0 20.0 10.0 10.0 5.0
    S4 40.0 100.0 40.0 20.0 20.0 10.0
    S5 80.0 200.0 80.0 40.0 40.0 20.0
    S6 120.0 400.0 120.0 60.0 60.0 30.0
    S7 200.0 1000.0 200.0 100.0 100.0 50.0
    下载: 导出CSV 
    | 显示表格

    多元素系统分析中,对熔矿方式的选择要优先考察矿物晶格稳定的难熔元素的熔矿完全程度。6种待测元素中钨、钼、锗[7]、硒、碲[8]可采用高氯酸(硫酸)-硝酸-氢氟酸-(盐酸)以敞开酸溶的方式进行样品分解,样品分解效果好,但采用敞开酸溶法进行锡矿石元素分析时存在矿物分解不完全的风险,且方法适用矿种范围窄[9]。高压封闭酸溶的方式使锡消解完全,但需增压和延长样品消解时间[10],造成溶矿效率低且无法大批量处理样品。

    对于含锡石的难溶铅锌矿石,采用过氧化钠熔融可以使样品分解完全。但碱性熔剂引入了大量盐类物质和基体组分,并含有一定量的金属、非金属杂质,造成分析空白偏高。本法通过将熔剂过筛(10目)、混匀、固定熔剂加入量的方式使空白值保持一致。

    经过氧化钠熔融,样品溶液体系中的总固体溶解量(TDS)较高(大于0.5%),并通过进样系统沉积于采样锥、截取锥和离子透镜,影响ICP-MS测试的稳定性[11]。其中高含量的钠盐将吸收等离子体电离能,降低中心通道的温度,对待测元素产生电离抑制。

    在测定液中加入的柠檬酸,通过N或O电负性较强的阴离子作用于钨、钼、锡金属阳离子中心形成稳定的复合物;锗、硒和碲在强碱性溶液中分别以锗酸根(GeO32-)、硒酸根(SeO42-)、碲酸根(H4TeO62-)的形式存在。强酸型阳离子树脂中的H+在溶液中与Na+发生交换,降低了盐类浓度[12],使溶液由强碱性逐渐转化为弱酸性,离子交换后的溶液pH=4~5;同时使造岩元素铁、铝、钙、镁以及基体元素从溶液中分离,减少了基体干扰。三乙醇胺、柠檬酸作为络合剂,有助于铁、铝元素的交换,使溶液澄清。

    选取标准物质GBW07170、GBW07167和BY0110-1,考察主量元素铜、铅、锌、铁的去除情况,表 2中的数据表明,按照本实验方法处理各主量元素的去除率均高于96%,这些主量元素在测定介质中的实际浓度为0.192 ng/mL~1.28 μg/mL,对待测元素的干扰可基本忽略。

    表  2  主量元素去除试验
    Table  2.  Removal tests of the principal components
    标准物质编号 Cu Pb Zn Fe
    认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%)
    GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 -
    GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67
    BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 -
    注:“-”表示该元素无定值或其去除率无法计算。
    下载: 导出CSV 
    | 显示表格

    选择铼、铑及离子行为与待测元素相近的硼、磷、碘元素(在碱性溶液中以阴离子形式存在)进行内标试验。这些内标元素与待测元素钨、钼、锡、锗、硒、碲的第一电离电位范围为7.460~10.486 eV与7.099~9.752 eV。按照金属和非金属元素进行分组内标试验,分次考察不同仪器条件和不同时间下钨、钼、锡、锗、硒、碲与内标元素的计数值之比,计算各元素测定值的相对标准偏差(RSD,n≥20),试验结果如表 3

    表  3  内标元素选择试验
    Table  3.  Selection tests of internal standards
    内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围
    Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
    土壤样品:0.074~0.53 ng/g
    Rh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g
    B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g
    P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g
    I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g
    注:各元素大致含量范围参考国家一级标准物质定值。
    下载: 导出CSV 
    | 显示表格

    在各类地质样品中,铼、铑、碘元素的含量普遍低于10 μg/g,而磷的自然丰度均高于100 μg/g。铼与钨钼锡锗、硼与硒碲的多次测定的相对标准偏差均低于2.5%,测试相关性优于铑、磷和碘内标元素。同时考虑到碘的氢化物可能对碲产生质谱干扰,本实验最终以铼和硼分别作为金属和非金属元素的内标元素。

    质谱常见干扰包括同量异位素的干扰和多原子离子复合物(氢、氧、氩复合物等)的干扰[13]。在本方法中,同量异位素干扰如74Se对74Ge的干扰、氩气中的杂质82Kr对82Se的测定干扰;而多原子离子复合物的干扰包括182W受1H181Ta的干扰,95Mo受40Ar55Mn的干扰,118Sn可能受到16O102Ru和12C106Pd的干扰,铁氧化物58Fe16O和镍氧化物58Ni16O干扰74Ge的测定,66Zn16O干扰82Se的测定,128Te可能受到1H127I的干扰。

    对同量异位素的干扰在线校正,选择干扰元素的异质同位素进行定量测定,根据干扰元素同位素的丰度比计算干扰系数,采用数学公式校正的方法,仪器自动对干扰进行扣除,干扰校正方程见表 4。多原子离子复合物的干扰较为复杂,且氩复合物的干扰难以避免,在测定时选择动能歧视(KED)模式[14],同时加入强酸型阳离子树脂交换去除溶液中大部分的稀土元素、Fe3+、Ni2+、Mn2+及高含量Cu2+、Pb2+、Zn2+等离子,干扰基本可以消除。

    表  4  同位素、相关系数、质谱干扰扣除及方法检出限
    Table  4.  Isotope, correlation coefficient, mass spectrum interference deduction and detection limits
    元素 同位素 相关系数 干扰校正 方法检出限(μg/g)
    树脂处理前 树脂处理后
    W 182W 0.9981 0.9995 - 0.50
    Mo 95Mo 0.9990 0.9999 - 0.15
    Sn 118Sn 0.9954 0.9994 - 0.29
    Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15
    Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05
    Te 128Te 0.9923 0.9995 - 0.03
    注:“-”表示元素无干扰或存在的干扰极小,可忽略。
    下载: 导出CSV 
    | 显示表格

    制备工作曲线溶液时进行基体匹配,因此溶液介质中存在较高浓度的钠盐。本法通过阳离子树脂处理工作曲线溶液,所得工作曲线的相关性优于不加阳离子树脂处理的方法,与同类酸溶研究相比,硒、碲工作曲线的相关性较优[8]。由于加入大量碱性熔剂进行样品熔融,受试剂空白影响,钨、钼、锡元素的检出限高于混合酸酸溶的前处理方法[5],碲的检出限优于国家标准方法和萃取分离-石墨炉原子吸收光谱法检出限0.20 μg/g和0.055 μg/g[4],曲线相关系数及方法检出限见表 4。考虑实际样品中各元素的含量,本方法满足铅锌矿石中多元素的分析测试要求。

    选取标准物质GBW07234、GBW07164及GBW07235按照1.3节实验方法进行准确度试验,计算相对误差和加标回收率;对样品进行平行分析(n=8),计算相对标准偏差(RSD),分析结果列于表 5。标准物质测定的相对误差范围为-8.33%~7.00%,加标回收率为94.9%~107.5%,多次测定相对标准偏差(RSD)均小于8%,方法准确度满足地质矿产实验室测试质量管理规范(DZ/T 0130—2006)的要求(按照样品中各元素含量计算可允许最小相对偏差为16.98%)。与混合酸酸溶的方法相比,钨、钼和锡的相对标准偏差(RSD)略高于ICP-MS法(钨、钼和锡分别为2.9%~3.6%、2.4%~2.9%和2.7%~3.9%)[5],其中钼和锗的相对标准偏差(RSD)略低于孟时贤等测定铅锌矿采用的电感耦合等离子体发射光谱法1.5%~5.4%和1.4%~5.7%[15]

    表  5  准确度和精密度试验
    Table  5.  Accuracy and precision tests of the method
    标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%)
    GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7
    Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2
    Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5
    Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7
    Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1
    Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6
    GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2
    Mo 137 137.6 0.44 150.0 282.3 98.3 1.5
    Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6
    Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6
    Se 24 25.1 4.58 30.0 55.3 102.4 1.8
    Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7
    GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2
    Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8
    Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6
    Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1
    Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3
    Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2
    下载: 导出CSV 
    | 显示表格

    采用铅锌矿石国家标准方法和传统分析方法,无法同时测定钨、钼、锡、锗、硒、碲,其中低含量元素需要分离富集,分析效率低、流程长且存在不可避免的主量元素干扰。本方法采用过氧化钠碱熔体系,在样品前处理环节通过阳离子树脂交换分离高含量钠盐和可能产生干扰的高含量铅,实现了在一个溶液体系中快速、准确、同时测定多种元素。本研究在降低方法检出限等方面可加强探索以扩大方法适用范围。本方法应用树脂分离富集技术去除干扰,优化了测定介质,为低含量难熔元素的准确测定提供了思路,同时可考虑应用于地质样品中硼、碘等元素的分析测试。

  • 图  1   极谱法测定FeSO4(a)和ZnS(b)对U(Ⅵ)含量的影响

    Figure  1.   Effect of FeSO4(a) and ZnS(b) on U(Ⅵ) content determined by polarography

    图  2   极谱法测定腐殖酸对U(Ⅵ)含量的影响

    Figure  2.   Effect of humic acid on U(Ⅵ) content determined by Polarography

    表  1   分光光度法测定FeSO4和ZnS对U(Ⅳ)含量的影响

    Table  1   Effect of FeSO4 and ZnS on U(Ⅳ) content determined by Spectrophotometry

    FeSO4称样量
    (g)
    吸光度
    (mV)
    U(Ⅳ)含量
    (μg)
    ZnS称样量
    (g)
    吸光度
    (mV)
    U(Ⅳ)含量
    (μg)
    0.00 0.0107 0.00 0.0160 0.1212 2.67
    0.01 0.0276 0.38 0.0260 0.1202 2.64
    0.02 0.0275 0.45 0.0470 0.1250 2.75
    0.04 0.0274 0.48 0.0640 0.1318 2.90
    0.05 0.0253 0.65 0.0840 0.1390 3.06
    0.10 0.1478 2.57 0.1000 0.1379 2.99
    0.20 0.1336 2.35 0.2000 0.1330 2.93
    0.30 0.1346 2.34 0.3000 0.1347 2.96
    0.40 0.1376 2.42
    0.50 0.1131 1.84
    0.90 0.0765 1.33
    1.00 0.0862 1.52
    2.00 0.0709 0.98
    3.00 0.0635 1.03
    下载: 导出CSV

    表  2   黄铁矿和钛铁矿在不同酸度下还原的U(Ⅵ)量

    Table  2   Contents of U(Ⅵ) reduced by pyrite and ilmenite in different acidity

    还原剂 U(Ⅵ)含量(μg)
    pH=1 pH=6 pH=7
    黄铁矿 9.67 0.57 0
    钛铁矿 3.00 0.31 0
    下载: 导出CSV

    表  3   分光光度法测定腐殖酸对U(Ⅵ)含量的影响

    Table  3   Effect of humic acid on U(Ⅵ) content determined by spectrophotometry

    腐殖酸称样量(g) 吸光度(mV) U(Ⅵ)含量(μg)
    0.001 0.0260 0.48
    0.002 0.0278 0.52
    0.003 0.0276 0.51
    0.004 0.0285 0.53
    0.005 0.0288 0.53
    0.010 0.0291 0.54
    0.020 0.0299 0.55
    0.030 0.0300 0.56
    0.040 0.0315 0.58
    0.060 0.0311 0.58
    下载: 导出CSV

    表  4   浸泡液中亚铁离子含量

    Table  4   Content of Fe2+ in the soaking solution

    样品编号 样品性质 Fe2+含量
    (μg/mL)
    pH △Eh
    (mV)
    1 灰绿色砂岩 1.17 9.4 1
    2 灰绿色砂岩 8.63 9.5 4
    3 灰绿色砂岩 1.91 9.2 2
    4 灰绿色砂岩 17.49 9.2 10
    5 灰绿色砂岩 13.99 8.9 7
    6 灰绿色砂岩 26.43 8.8 31
    7 灰绿色中细砂岩 14.38 9.1 7
    下载: 导出CSV
  • 张卫民, 刘金辉, 李学礼, 等.水岩体系Eh-pH法在砂岩型铀矿层间氧化带划分中的应用——以新疆伊犁盆地512铀矿床为例[J].地球学报, 2003, 24(1):85-90. doi: 10.3321/j.issn:1006-3021.2003.01.014

    Zhang W M, Liu J H, Li X L, et al.Application of the water-rock system Eh-pH method to the division of the interlayer oxidation zone in the sandstone type uranium ore[J].Acta Geosicientia Sinica, 2003, 24(1):85-90. doi: 10.3321/j.issn:1006-3021.2003.01.014

    张卫民, 刘金辉, 孙占学, 等.水岩体系Eh-pH法及其在砂岩型铀矿体定位研究中的应用——以新疆伊犁盆地512铀矿床为例[J].华东地质学院学报, 2002, 25(2):91-97. doi: 10.3969/j.issn.1674-3504.2002.02.001

    Zhang W M, Liu J H, Sun Z X, et al.The water-rock system Eh-pH method and its application to sandstone type uranium orebody position research-Exemplified by 512 uranium deposit, Yili Basin, Xinjiang[J].Journal of East China Geological Institute, 2002, 25(2):91-97. doi: 10.3969/j.issn.1674-3504.2002.02.001

    彭新建, 闵茂中, 王金平, 等.层间氧化带砂岩型铀矿床铁物相特征及其地球化学意义——以伊犁盆地511铀矿床和吐哈盆地十红滩铀矿床为例[J].地质学报, 2003, 77(1):120-125. doi: 10.3321/j.issn:0001-5717.2003.01.014

    Peng X J, Min M Z, Wang J P, et al.Characteristics and geochemical significance of the ferrum phases in the Shihongtan interlayered-oxidation zone sandstone type uranium deposit[J].Acta Geologica Sinica, 2003, 77(1):120-125. doi: 10.3321/j.issn:0001-5717.2003.01.014

    孙占学, 刘金辉, 朱永刚, 等.砂岩铀矿成矿过程与氧化还原分带:铀系不平衡证据[J].地球科学——中国地质大学学报, 2004, 29(2):224-230. http://d.old.wanfangdata.com.cn/Periodical/dqkx200402016

    Sun Z X, Liu J H, Zhu Y G, et al.Ore-forming process and redox zoning of sandstone-type U deposits:Evidence from U series disequilibrium[J].Earth Science-Journal of China University of Geosciences, 2004, 29(2):224-230. http://d.old.wanfangdata.com.cn/Periodical/dqkx200402016

    金若时, 张成江, 冯晓曦, 等.流体混合对砂岩型铀矿成矿作用的影响[J].地质通报, 2014, 33(2-3):354-358. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201402024

    Jin R S, Zhang C J, Feng X X, et al.The influence of fluid mixing on the mineralization of sandstone type uranium deposits[J].Geological Bulletin of China, 2014, 33(2-3):354-358. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201402024

    王彦美, 熊永强.有机地球化学在重建砂岩型铀矿形成物理化学环境方面的应用前景[J].矿物岩石地球化学通报, 2006, 25(2):173-176. doi: 10.3969/j.issn.1007-2802.2006.02.013

    Wang Y M, Xiong Y Q.Perspective of organic geochemistry applied on reconstructing physico-chemical environment of the formation of the sandstone-type uranium deposit[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(2):173-176. doi: 10.3969/j.issn.1007-2802.2006.02.013

    李子颖, 方锡珩, 陈安平, 等.鄂尔多斯盆地北部砂岩型铀矿目标层灰绿色砂岩成因[J].中国科学(地球科学), 2007, 37(增刊):139-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702627882

    Li Z Y, Fang X X, Chen A P, et al.Origin of grey-green sandstones in the target layer of sandstone-type uranium deposits in the Northern Ordos Basin[J].Science in China (Earth Science), 2007, 37(Supplement):139-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702627882

    Shamim A, Yang X Y, Franco P.Sandstone type uranium deposits in the Ordos Basin, Northwest China:A case study and an overview[J].Journal of Asian Earth Sciences, 2017, 146(9):367-382. http://www.sciencedirect.com/science/article/pii/S1367912017302535

    尹金双, 向伟东, 欧光习, 等.微生物、有机质、油气与砂岩型铀矿[J].铀矿地质, 2005, 21(5):287-295. doi: 10.3969/j.issn.1000-0658.2005.05.005

    Yin J S, Xiang W D, Ou G X, et al.Sandstone-type uranium mineralization with respect to organic matter, microbe, and oil and gas[J].Uranium Geology, 2005, 21(5):287-295. doi: 10.3969/j.issn.1000-0658.2005.05.005

    李兵, 朱海军, 廖家莉, 等.腐殖质与铀和超铀元素相互作用的研究进展[J].化学研究与应用, 2007, 19(12):1289-1295. doi: 10.3969/j.issn.1004-1656.2007.12.001

    Li B, Zhu H J, Liao J L, et al.Progress on the interaction of humic substances with uranium and TRU elements[J].Chemical Research and Application, 2007, 19(12):1289-1295. doi: 10.3969/j.issn.1004-1656.2007.12.001

    曾江萍, 安树清, 徐铁民, 等.腐殖酸对U(Ⅵ)的吸附性能研究[J].地质学报, 2016, 90(12):3563-3569. doi: 10.3969/j.issn.0001-5717.2016.12.021

    Zeng J P, An S Q, Xu T M, et al.On adsorption performance of humic acid on uranium[J].Acta Geologica Sinica, 2016, 90(12):3563-3569. doi: 10.3969/j.issn.0001-5717.2016.12.021

    Wu B L, Xu G W, Liu C Y, et al.Alteration effects of hydrocarbon dissipation in the Dongsheng uranium deposit, Ordos Basin-Explanation for green alteration and bleaching phenolmenon[J].Energy Exploration Exploitation, 2009, 27(1):181-199. doi: 10.1260/014459809789618812

    付勇, 魏帅超, 金若时, 等.我国砂岩型铀矿分布特征研究现状及存在问题[J].地质学报, 2016, 90(12):3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018

    Fu Y, Wei S C, Jin R S, et al.Current status and existing problems of China's sandstone-type uranium deposits[J].Acta Geologica Sinica, 2016, 90(12):3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018

    张玉燕, 刘红旭, 修小茜.我国北西部地区层间氧化带砂岩型铀矿床微生物与铀成矿作用研究初探[J].地质学报, 2016, 90(12):3508-3518. doi: 10.3969/j.issn.0001-5717.2016.12.017

    Zhang Y Y, Liu H X, Xiu X Q.Relationship between micro-organisms and uranium metallogeny of the interlayer oxidation zone sandstone-type uranium deposits in NW China[J].Acta Geologica Sinica, 2016, 90(12):3508-3518. doi: 10.3969/j.issn.0001-5717.2016.12.017

    Christophe B, Liu X D, Yan Z B, et al.Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China[J].Ore Geology Reviews, 2017, 82(4):108-129. http://www.sciencedirect.com/science/article/pii/S0169136816305455

    Cumberland S A, Douglas G, Grice K, et al.Uranium mobility in organic matter-rich sediments:A review of geological and geochemical processes[J].Earth-Science Reviews, 2016, 159(5):160-185. http://www.sciencedirect.com/science/article/pii/S001282521630099X

    刘武生, 赵兴齐, 史清平, 等.中国北方砂岩型铀矿成矿作用与油气关系研究[J].中国地质, 2017, 44(2):279-287. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201702005

    Liu W S, Zhao X Q, Shi Q P, et al.Research on relationship of oil-gas and sandstone-type uranium mineralization of Northern China[J].Geology in China, 2017, 44(2):279-287. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201702005

    刘玉龙, 丁德馨, 李广悦, 等.沥青铀矿石硫酸和细菌浸出过程的比较研究[J].有色金属, 2012(9):48-50. doi: 10.3969/j.issn.1007-7545.2012.09.013

    Liu Y L, Ding D X, Li G Y, et al.Comparative study on leaching process of sulphuric acid and bacterial leaching of uraninite ores[J]. Nonferrous Metals, 2012(9):48-50. doi: 10.3969/j.issn.1007-7545.2012.09.013

    乔海明, 徐高中, 张复新, 等.层间氧化带砂岩型铀矿成矿过程中铁的地球化学行为——以新疆吐哈盆地十红滩铀矿床为例[J].沉积学报, 2013, 31(3):461-467. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CJXB201303009&dbname=CJFD&dbcode=CJFQ

    Qiao H M, Xu G Z, Zhang F X, et al.Study on iron geochemical behavior in the interlayer oxidation zone sandstone-type uranium metallogenetic process:A case from Shihongtan uranium deposit in the Turpan-Hami Basin of Xinjiang[J].Acta Sedimentologica Sinica, 2013, 31(3):461-467. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CJXB201303009&dbname=CJFD&dbcode=CJFQ

    陈梅安, 张天祥, 殷晋尧.单扫描示波极谱法直接测定废水、矿渣、矿石中的铀[J].分析化学, 1982, 11(11):860-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000490069

    Chen M A, Zhang T X, Yin J Y.Catalytic potentiometric determination of trace copper in some viscera of pigswith periodate ion-selective electrode[J].Analytical Chemistry, 1982, 11(11):860-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000490069

    陈梅安, 岳文山, 由文职.低浓铀的快速极谱测定法及其在线监测[J].铀矿冶, 2005, 24(3):159-162. doi: 10.3969/j.issn.1000-8063.2005.03.010

    Chen M A, Yue W S, You W Z.Fast polarographic determination and on-line monitoring of low concentration uranium[J].Uranium Mining and Metallurgy, 2005, 24(3):159-162. doi: 10.3969/j.issn.1000-8063.2005.03.010

    李功顺, 朱樱, 齐玲, 等.极谱法同时测定岩石中的微量铀钍[J].铀矿地质, 2009, 25(4):240-244. doi: 10.3969/j.issn.1000-0658.2009.04.008

    Li G S, Zhu Y, Qi L, et al.Simultaneous determination of micro uranium and thorium in rocks by polarography[J].Uranium Geology, 2009, 25(4):240-244. doi: 10.3969/j.issn.1000-0658.2009.04.008

    李悟庆, 李霞.铜铁试剂中铀的催化极谱测定[J].化学工程师, 2009(8):43-46. doi: 10.3969/j.issn.1002-1124.2009.08.014

    Li W Q, Li X.Determination of uranium in cupferron by catalytic polarography[J].Chemical Engineer, 2009(8):43-46. doi: 10.3969/j.issn.1002-1124.2009.08.014

    Li Z Y, Fang X H, Chen A P, et al.Origin and super-position metallogenic model of the sandstone-type uranium deposit in the Northeastern Ordos Basin, China[J].Acta Geological Sinica (English Edition), 2008, 82(4):745-749. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXW200804004&dbname=CJFD&dbcode=CJFQ

    刘汉彬, 李子颖, 秦明宽, 等.鄂尔多斯盆地北部砂岩型铀矿地球化学研究进展[J].地学前缘, 2012, 19(3):139-146. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203017

    Liu H B, Li Z Y, Qin M K, et al.Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J].Earth Science Frontiers, 2012, 19(3):139-146. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203017

    刘正邦.呼斯梁地区宝贝沟地段铀成矿条件分析[J].河南理工大学学报, 2010, 29(增刊):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201004894233

    Liu Z B.Analysis of uranium metallogenic conditions in Baogou section of Husiliang area[J].Journal of Henan Polytechnic University, 2010, 29(Supplement):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201004894233

    王永君.呼斯梁地区直罗组下段古层间氧化带特征[J].河南理工大学学报(自然科学版), 2010, 29(增刊):164-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201004892038

    Wang Y J.Characteristics of oxidation zones in the lower member of Zhiluo Formation in Husiliang area[J].Journal of Henan Polytechnic University (Natural Science), 2010, 29(Supplement):164-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201004892038

    赵瑞全, 秦明宽, 王正邦.微生物和有机质在512层间氧化带砂岩型铀矿中的作用[J].铀矿地质, 1998, 14(6):339-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800675979

    Zhao R Q, Qin M K, Wang Z B.Effect of microorganism and organic matters on sandstone type uranium mineralizations in interlayer oxidation zone in deposit No.512[J].Uranium Geology, 1998, 14(6):339-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800675979

    焦养泉, 吴立群, 荣辉.砂岩型铀矿双重还原介质模型及其联合控矿机理:兼论大营和钱家店铀矿床[J].地球科学, 2018, 43(2):459-474. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQKX201802009&dbname=CJFD&dbcode=CJFQ

    Jiao Y Q, Wu L Q, Rong H.Model of inner and outer reductive media with in uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling mechanism:Case studies in Daying and Qianjiadian uranium deposits[J].Earth Science, 2018, 43(2):459-474. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DQKX201802009&dbname=CJFD&dbcode=CJFQ

  • 期刊类型引用(8)

    1. 程银行,金若时,苗培森,王少轶,滕雪明. 砂岩型铀矿的两种成矿模式:泾川式和塔勒式. 地球科学. 2025(01): 46-57 . 百度学术
    2. 李强,赵兴齐,陈擎,陈云杰,陈斌,荣骁,赵旭,康利刚,时志浩,李天石,龚奇福. 柴西缘英东地区上油砂山组黄铁矿与砂岩型铀矿化关系研究. 大地构造与成矿学. 2024(06): 1274-1285 . 百度学术
    3. 刘鑫扬,贺锋,剡鹏兵,张字龙,鲁超,任志勇,骆效能,张艳. 鄂尔多斯盆地东北部铀成矿地质特征与区域成矿规律. 铀矿地质. 2022(03): 373-393 . 百度学术
    4. 张莉娟,方蓬达,王力强,王家松. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍. 岩矿测试. 2022(05): 798-805 . 本站查看
    5. 王娜,王家松,曾江萍,李强,吴磊,陈枫. 重铬酸钾和高锰酸钾电位落差法测定砂岩型铀矿氧化还原电位的探讨. 岩矿测试. 2022(05): 806-814 . 本站查看
    6. 张然,叶丽娟,党飞鹏,肖志斌,毕君辉,周晶,郭虎,许雅雯,耿建珍,周红英. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用. 岩矿测试. 2021(01): 61-73 . 本站查看
    7. 宋柏荣,孙慧,杨松林,韩洪斗,李青春,施玉华,唐洁云,刘玉婷. 松辽盆地钱家店砂岩型铀矿床含矿岩系组成特征与铀成矿作用. 古地理学报. 2020(02): 309-320 . 百度学术
    8. 冯晓曦,滕雪明,何友宇. 初步探讨鄂尔多斯盆地东胜铀矿田成矿作用研究若干问题. 地质调查与研究. 2019(02): 96-103+108 . 百度学术

    其他类型引用(1)

图(2)  /  表(4)
计量
  • 文章访问数:  1512
  • HTML全文浏览量:  461
  • PDF下载量:  29
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-12-17
  • 修回日期:  2018-06-03
  • 录用日期:  2018-06-10
  • 发布日期:  2018-06-30

目录

/

返回文章
返回