Study on the Total Iodine and Iodine Speciation Characteristics in Xilingol League, Inner Mongolia and Tacheng, Xinjiang High Iodine Area by HPLC-ICP-MS
-
摘要: 长期饮用高碘水将对人体造成危害,地下水总碘及碘形态分析对于高碘地区碘环境地球化学研究具有重要价值。本文采用高效液相色谱-电感耦合等离子体质谱联用技术对内蒙古锡盟与新疆塔城高碘地区地下水总碘及碘形态进行测定。研究表明:锡盟地区地下水中碘以I-形态为主,总碘量维持在200 μg/L,个别点位达到600 μg/L甚至1700 μg/L,呈环状分布,从东北至西南呈现“低-高-低”的分布规律;塔城地区地下水中的碘以IO3-形态为主,总碘量不足100 μg/L,个别点位接近200 μg/L,呈层状分布,自东向西逐渐升高。分析认为,氧化性的条件利于不同碘形态之间的转化;溶解氧过高或过低都不利于碘的储存;碘会随着可溶性盐的流失而流失;沿河流的流向,下游地势较低,总碘得到积累。本研究结果对于锡盟和塔城地区科学预防甲状腺肿、制定法律法规具有指导作用。
-
关键词:
- 地下水 /
- 总碘 /
- 碘形态 /
- 高效液相色谱-电感耦合等离子体质谱
Abstract: Long-term drinking of high-content iodine water will cause harm to human health. The analysis of total iodine and iodine speciation in high iodine groundwater is of great value for iodine environmental geochemistry in high iodine regions. In this study, High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) was used to analyze the total iodine and iodine speciation of groundwater in Xilingol League, Inner Mongolia and Tacheng, Xinjiang high iodine area. Results show that I- is dominant in Xilingol League groundwater and the total iodine is maintained at 200 μg/L, with individual points reaching 600 μg/L or even 1700 μg/L. The content of iodine in Xilingol League groundwater is distributed in a circular pattern, showing a 'low-high-low' distribution pattern from northeast to southwest. IO3- is dominant in Tacheng groundwater, with the total iodine content of less than 100 μg/L and the individual points are close to 200 μg/L. Moreover, the total iodine content increases gradually from east to west, showing a layered distribution. Oxidation condition is beneficial to the transformation between different iodine speciations. It is not conducive to the iodine enrichment when dissolved oxygen is too high or too low. Iodine will decrease with soluble salt loss. The downstream total iodine content is higher than the upstream content along the flow direction. This study is of significance to the scientific prevention of goiter and the establishment of laws and regulations in Xilingol League and Tacheng. -
中国是稀土资源大国,占世界稀土矿产资源的80%,稀土元素对岩石形成过程、元素的迁移等研究都有一定的作用,提供了有价值的信息[1-3]。由于稀土元素的化学性质极其相似,因此采用传统化学法分析时需要冗长的分离富集过程[4],且只能测定稀土总量,而不能测定特定元素的含量[5]。样品中的稀土元素含量超过0.1%,对于这种通常概念上的微量元素,其实已转变为常量组分,大多采用电感耦合等离子体发射光谱法(ICP-OES)[6]测定,相对于应用X射线荧光光谱法(XRF)的前处理程序比较繁琐且试剂用量大。
XRF法具有制样方法简单、分析速度快、重现性好等特点[7],熔融制样法能消除粒度效应,降低元素间的基体效应影响,使复杂的试样也能完全熔融[8],适合于多种固体样品中主量、次量多元素的同时测定。目前XRF法分析稀土矿石类样品,主要的应用有:混合稀土氧化物中稀土分量的测定[9-11];采用同步辐射XRF法测定稀土元素的最低浓度[12];利用粉末压片法制备样品,通过无标定量分析软件添加与待测组分相似样品来建立标签,从而实现稀土矿物中五氧化二磷的准确测定[13];以及在其他地质矿化类样品中测定主次量元素开展了大量的研究[5, 14-17]。但应用于测定稀土矿石、矿化样品中的主、次量元素的相关报道较少。对于稀土样品的分析,存在现有的稀土国家标准物质少、稀土元素含量较低、重稀土元素谱线重叠严重等问题,从而导致了应用XRF分析稀土矿石类样品中的主量元素和稀土元素仍存在一定的困难。
鉴于此,本文通过现有的国家稀土标准样品和高纯稀土氧化物混合均匀制得的人工标准样品绘制工作曲线,扩大了自然界丰度较大的稀土元素镧、铈、钇的线性范围,应用熔融制样-波长色散XRF法测定样品,采用理论α系数的校准方法对主量元素进行校正的同时加入稀土元素的校正系数,其余元素用经验系数法来校正元素间的基体效应,对有谱线重叠的元素进行重叠干扰校正。通过对未知样品的检测和对标准样品的反测检验方法的可行性,证明了建立的测定方法可满足稀土矿化类样品分析的可靠性,可为地质评估提供满意的数据要求。
1. 实验部分
1.1 仪器和测量条件
Axios型X射线荧光光谱仪(荷兰帕纳科公司)。主要测量参数:X光管最大电压60 kV,最大电流125 mA,满功率4.0 kW,真空光路,视野光栏直径为32 mm,试样盒面罩直径32 mm。各待测元素的谱线选择和测量条件见表 1。
表 1 仪器分析条件Table 1. Working conditions of the elements by XRF元素及谱线 分晶体 准直器
(μm)探测器 电压
(kV)电流
(mA)2θ(°) PHD范围 峰值 背景1 背景2 Si Kα PE 002 550 FL 32 100 109.14 -2.3160 1.7938 26~76 K Kα LiF 200 150 FL 32 100 136.73 -1.1730 2.2190 26~74 Ti Kα LiF 200 150 FL 40 90 86.215 -0.6320 0.8640 26~75 Mn Kα LiF 200 150 DUP 55 66 62.998 -0.7190 0.7868 13~72 Na Kα PX1 550 FL 32 100 27.895 -1.8910 2.1214 22~82 Mg Kα PX1 550 FL 32 100 23.077 -1.8760 2.1788 20~78 Al Kα PE 002 550 FL 32 100 144.98 2.9372 -1.2490 21~76 P Kα Ge 111 550 FL 32 100 141.02 -1.3960 2.8040 23~78 S Kα Ge 111 550 FL 32 100 110.74 -1.5160 1.4708 16~74 Ca Kα LiF 200 150 FL 32 100 113.16 -0.8730 1.6258 28~70 Fe Kα LiF 200 150 DUP 55 66 57.530 -0.7130 0.8854 16~69 Cr Kα LiF 200 150 DUP 55 66 69.365 -0.6450 0.7386 12~73 Ni Kα LiF 200 150 DUP 55 66 48.658 -0.5890 0.8294 18~70 Y Kα LiF 200 150 SC 55 66 23.767 0.7668 -0.7400 23~78 Rb Kα LiF 200 150 SC 55 66 26.581 0.7720 -0.5110 22~78 Sr Kα LiF 200 150 SC 55 66 25.121 -0.5610 0.7542 22~78 Zr Kα LiF 200 150 SC 55 66 22.470 -0.7750 0.8758 24~78 Nb Kα LiF 200 150 SC 55 66 21.372 -0.5870 0.4690 24~78 Cu Kα LiF 200 150 DUP 55 66 45.010 -0.6960 0.9256 20~69 Zn Kα LiF 200 150 SC 55 66 41.796 -0.7050 0.6534 15~78 Ba Kα LiF 200 150 FL 40 90 87.204 0.6376 - 33~71 Rh Kαc LiF 200 150 SC 55 66 18.447 - - 26~78 V Kα LiF 200 150 DUP 40 90 76.929 -0.6230 - 15~74 Br Kα LiF 200 150 SC 55 66 29.940 -0.6830 0.9706 20~78 La Lα LiF 200 150 FL 40 90 82.938 -0.9010 24~78 Ce Lα LiF 200 150 DUP 40 90 79.047 -0.8740 - 26~78 Pr Lα LiF 200 150 DUP 55 66 75.379 -0.8580 - 15~74 Nd Lα LiF 200 150 DUP 55 66 72.141 -0.9860 - 13~74 Sm Lα LiF 200 150 DUP 55 66 66.237 0.9598 - 15~73 Tb Lα LiF 200 150 DUP 55 66 58.800 0.3626 - 15~72 Dy Lα LiF 200 150 DUP 55 66 56.600 -0.8020 - 15~71 Ho Lα LiF 200 150 DUP 55 66 54.575 -0.6550 - 16~71 Er Lα LiF 200 150 DUP 55 66 52.605 0.7728 - 17~71 Yb Lα LiF 200 150 DUP 55 66 49.038 0.8474 - 18~70 Lu Lα LiF 200 150 DUP 55 66 47.417 -0.4030 - 19~70 Ta Lα LiF 200 150 DUP 55 66 44.403 0.9066 - 20~69 Eu Lα LiF 200 150 DUP 55 66 63.591 0.4858 - 15~73 Gd Lα LiF 200 150 DUP 55 66 61.115 -0.8880 - 15~72 注: FL为流气式正比计数器, SC为闪烁计数器。DUP为流气式正比计数器和封闭式正比计数器串联使用,以提高探测效率。PHD为脉冲高度分析器。 Front-1型电热式熔样机(国家地质实验测试中心研制)。
铂金坩埚(95%铂+5%金)。石英表面皿:直径20 cm。
1.2 主要试剂
偏硼酸锂+四硼酸锂混合熔剂[8](质量比22:12,购自张家港火炬仪器厂):将混合溶剂置于大表面皿中,于马弗炉中650℃灼烧2 h,待冷却转入试剂瓶,置于干燥器中保存备。
碘化锂[18](脱模剂):优级纯,浓度为40 g/L。配制方法:称取40.0 g碘化锂溶于100 mL棕色试剂瓶中,待用。
硝酸铵(氧化剂):分析纯。
氧化镧、氧化钇、氧化铈:均为分析纯, 纯度99.99%。
1.3 样片制备
样品及熔剂的称量:精确称取灼烧后的混合溶剂5.8500±0.0002 g于30 mL瓷坩埚中,精确称取0.6500±0.0002 g样品置于瓷坩埚中[16],用玻璃棒充分搅匀(样品的要求:样品的粒径需小于200目,分取样品于纸质样品袋置于烘箱中,在105℃温度下烘样2 h。于干燥器内保存[16])。
熔样机条件设定:熔样温度1150℃,预熔2 min,上举1.5 min,摆平0.5 min,往复4次,熔样时间约为10 min;先粗略称取0.100 g硝酸铵[8]试剂平铺于铂金坩埚中,将称量好的试剂及样品倒入铂金坩埚中,滴两滴碘化锂溶液[18],当熔样机温度到达1150℃后,用坩埚钳将装有试样的铂金坩埚放入熔样机,启动熔样机开始熔样。待熔样机提示熔样完成后,将铂金坩埚取出,此时样品为玻璃熔融状态。观察试样底部是否有气泡,如有气泡可手动将气泡摇出[16],将铂金坩埚置于水平冷却台待样品底部与铂金坩埚分离后吹风冷却约3 min, 此时在玻璃样片上贴上标签,倒出样片置于干燥器中保存, 待测。
制备样片时,将稀土矿石标准物质(GBW07187、GBW07158、GBW07159、GBW07160、GBW07161)和人工配制标准样品(HC-XT-1~HC-XT-8)分别制备两套重复样片,一套用于建立标准曲线,另一套用作样品测量,检测方法的可行性。GBW07188、HC-XT-8分别重复制备10个,用于精密度的分析。岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136)和超基性岩石样品(DZΣ1、DZΣ2)各制备一个用于建立标准曲线。
1.4 样品配制及制备标准曲线的范围
在自然界中,镧、铈、钇的丰度较大,日常样品检测中这三个元素矿化的样品最为常见,因此本文重点通过人工标准物质来解决镧、铈、钇高含量样品的定量问题。在不同的稀土矿石国家标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161)中加入不等量高纯的稀土氧化物(La2O3、CeO2、Y2O3)扩大稀土的含量范围,既使各人工标准基体存在差异,镧、铈、钇含量又有一定梯度。制备人工标准样片时,各高纯稀土氧化物成分的质量和各标准物质称样量见表 2所示。
表 2 人工标准样品的配制Table 2. Preparation of artificial standard samples人工标准样品编号 La2O3加入量
(g)CeO2加入量
(g)Y2O3加入量
(g)国家标准物质编号 标准物质称样量
(g)HC-XT-1 0.0400 0.0500 - GBW07159 0.5600 HC-XT-2 0.0300 0.0400 - GBW07160 0.5800 HC-XT-3 0.0200 0.0300 - GBW07187 0.6000 HC-XT-4 0.0100 0.0200 - GBW07158 0.6200 HC-XT-5 - 0.0100 - GBW07188 0.6400 HC-XT-6 - - - GBW07187 0.3250 HC-XT-7 - - 0.0200 GBW07188 0.3250 HC-XT-8 0.0050 0.0050 - GBW07161 0.6300 GBW07188 0.6400 为满足不同类型稀土样品的测试要求,又要满足日常普通硅酸盐、碳酸盐样品的测试要求,本实验采用稀土矿石标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161),岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136),DZΣ1、DZΣ2和人工配制标准样品(HC-XT-1~HC-XT-8)共33个样片作为标准样品制备标准曲线。
各元素工作曲线范围列于表 3。
表 3 各元素工作曲线浓度范围Table 3. Working range of elements concentration主量元素 含量范围(%) 稀土元素 含量范围(μg/g) SiO2 0.3~74.55 Pr6O11 5.43~890 Al2O3 0.1~19.04 Sm2O3 13.53~2000 TFe2O3 0.07~3.49 Eu2O3 0.31~75 FeO 0.007~0.49 Gd2O3 27.91~2500 TiO2 0.003~0.537 Tb4O7 5.15~550 CaO 0.0224~55.49 Dy2O3 26.04~3700 Na2O 0.014~0.66 Tm2O3 2.29~310 MnO 0.004~0.1 Yb2O3 13.45~2100 P2O5 0.0022~0.124 La2O3* 0.002~6.16 MgO 0.066~20.15 CeO2* 0.0022~7.69 K2O 0.01~5.52 Y2O3* 0.017~3.2 Nd2O3* 0.0024~0.4 Lu2O3 1.91~300 Ho2O3 5.44~640 Er2O3 15.26~2000 Σ RExOy* 0.085~13.92 注:标记“*”的元素含量单位为%。 2. 结果与讨论
2.1 基体效应及谱线重叠干扰的校正
对主量元素采用消去烧失量的理论α系数法, 其余元素用经验系数法来校正元素间的基体效应,其中NiO、Rb2O、SrO、Y2O3、ZrO2、Nb2O5、Sm2O3、CeO2、Tb4O7、Ho2O3、Er2O3、Lu2O3采用Rh Kα线康普顿散射强度作内标校正基体效应[19]。采用帕纳科公司SuperQ3.0软件所用的综合数学校正公式(1),通过回归,同时求出校准曲线的基体校正系数和谱线重叠干扰校正系数。
$ \begin{align} &{{C}_{\text{i}}}=\text{ }{{D}_{\text{i}}}-\sum {{L}_{\text{im}}}{{Z}_{\text{m}}}+{{E}_{\text{i}}}{{R}_{\text{i}}}(1+\sum\limits_{j\ne 1}^{N}{{{\alpha }_{\text{ij}}}\cdot {{Z}_{\text{j}}}+} \\ &\ \ \ \ \ \sum\limits_{j=1}^{N}{\frac{{{\beta }_{\text{ij}}}}{1+{{\delta }_{\text{ij}}}\cdot {{C}_{\text{j}}}}\cdot {{Z}_{\text{j}}}+\sum\limits_{j=1}^{N}{\sum\limits_{k=1}^{N}{{{\gamma }_{\text{ij}}}\cdot {{Z}_{\text{j}}}\cdot {{Z}_{\text{k}}}}})} \\ \end{align} $
式中:Ci为校准样品中分析元素i的含量(在未知样品分析中,Ci为基体校正后分析元素i的含量;Di为分析元素i的校准曲线的截距;Lim为干扰元素m对分析元素i的谱线重叠干扰校正系数;Zm为干扰元素m的含量或计数率;Ei为分析元素i校准曲线的斜率;Ri为分析元素i的计数率(或与内标线的强度比值);Zj、Zk为共存元素的含量;Cj为共存元素j的含量;N为共存元素的数目;α、β、δ、γ为校正基体效应的因子。
根据快速扫描的结果,对有谱线重叠干扰的元素进行谱线重叠干扰校正,表 4列出了各稀土元素所校正的元素。
表 4 稀土元素的重叠谱线和影响元素Table 4. Overlapping spectral lines and influencing elements of rare earth elements待测元素 重叠谱线 校正基体元素 Y Rb Kβ1 Al,Si,Ba,Sr,Ni,Cr,Fe,Ca La Cs Lβ1 Si,Fe,Nd Nd Ce Lβ1 La,Sm,Al Ce Ba Lβ2 - Sm Ce Lβ2 - Tb Sm Lβ1 La,Ce Ho Gd Lβ1 Er,Yb Er Tb Lβ1,Co Kα La,Ce,Fe Yb Ni Kα Y Lu Dy Lβ2,Ni Kβ1 La Pr La Lβ1 La,Ce Eu - La,Ce Gd Ce Lγ1 La,Nd,Dy P Y Lβ1 - 2.2 方法检出限
按照检出限的公式计算出各元素的检出限:
$ \text{LOD}=\frac{3\sqrt{2}}{m}\sqrt{\frac{{{I}_{\text{b}}}}{t}} $
式中:m为计数率;Ib为背景计数率;t为峰值及背景的测量时间。
采用较低的标准物质重复测定12次计算的检出限结果见表 5。因本方法考虑测定的是稀土矿化类样品中的主量元素,而稀土元素检出限均在60 μg/g以下,因此对于高含量稀土元素能够满足定量分析要求。
表 5 分析元素的检出限Table 5. Detection limits of elements元素 方法检出限
(μg/g)Na2O 56.44 MgO 44.34 Al2O3 15.82 SiO2 96.03 P2O5 18.59 K2O 25.36 CaO 30.37 TiO2 20.04 MnO 8.32 Fe2O3 6.69 Y2O3 4.52 La2O3 42.6 Nd2O3 52.85 Sm2O3 42.74 CeO2 38.11 Tb4O7 44.83 Dy2O3 39.23 Ho2O3 8.86 Er2O3 27.19 Yb2O3 30.10 Lu2O3 13.41 Pr6O11 58.19 Eu2O3 6.14 Gd2O3 29.25 2.3 方法精密度和准确度
按照所建立的方法对国家标准物质GBW07188和人工标准样品HC-XT-8分别重复制作13个样片,以表 1所选测量条件测定,计算的相对标准偏差(RSD)和相对误差等测量结果列于表 6,其中绝大多数主量元素的RSD均小于1.5%,稀土元素的RSD在7%以下,个别含量较低元素的精密度较差,例如HC-XT-8号样品的CaO标准值为0.026%,测定平均值为0.021%,RSD为16.3%。而对于其他高含量CaO样品能够实现准确定量,例如GBW07188的CaO标准值为0.29,测定平均值同样为0.29,RSD为1.4%。对于Tb4O7、Lu2O3、Pr6O11等存在相同情况。表 6中的低含量结果仅作为参考数据,在此不作讨论。
表 6 方法准确度和精密度Table 6. Accuracy and precision tests of the method元素 GBW07188 HC-XT-8 测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)测定平均值
(%)标准值
(%)相对误差
(%)RSD
(%)Na2O 0.62 0.66 5.30 2.35 0.121 0.156 3.54 5.45 MgO 0.13 0.11 11.82 4.07 0.074 0.076 25.0 4.37 Al2O3 13.8 14.26 2.52 0.27 14.51 14.47 2.14 0.213 SiO2 66.8 66.9 0.01 0.19 73.5 73.4 0.15 0.17 K2O 5.56 5.52 1.09 0.32 4.861 4.9 0.86 0.27 CaO 0.29 0.29 0.69 1.40 0.021 0.026 2.80 16.3 TiO2 0.18 0.17 4.12 1.09 0.034 0.022 3.59 7.07 MnO 0.05 0.052 7.69 1.40 0.017 0.017 7.84 2.89 Fe2O3 2.28 2.24 2.05 0.30 1.13 1.13 1.90 0.14 Y2O3 2.14 2.16 0.93 0.71 0.054 0.056 1.78 0.98 La2O3 0.21 0.23 7.83 1.64 0.768 0.771 8.85 0.49 Nd2O3 0.41 0.4 2.50 0.88 0.003 0.003 5.57 69.5 Sm2O3* 2006 2000 0.05 2.92 30 15.5 3.40 34.7 CeO2 0.0619 0.053 26.42 5.39 0.728 0.771 2.26 2.30 Tb4O7* 652 550 16.55 6.94 7.93 8.07 24.17 46.2 Dy2O3* 3645 3700 2.38 0.69 未检出 55.4 6.64 - Ho2O3* 655 640 5.16 2.05 10.8 11.8 7.30 26.9 Er2O3* 1989 2000 1.95 1.94 25.45 35.8 13.71 38.8 Lu2O3* 306 300 5.60 4.13 2.57 5.4 1.02 48.1 Pr6O11* 863 890 8.58 5.40 99.5 6.2 18.49 55.2 Yb2O3* 2063 2100 2.72 0.79 13.55 36 8.95 33.0 Gd2O3* 2536 2500 0.80 1.16 111.9 31.9 7.47 13.4 加和 99.8 - - 0.12 99.6 - - 0.14 注:标记“*”的元素含量单位为μg/g。 2.4 全分析加和结果
以本文所建立的方法测量6个国家一级稀土标准物质、8个人工标准样品及8个未知的稀土样品,分析结果列于表 7,样品中主量元素、稀土元素和烧失量的加和结果均在99.41%~100.63%之间,所建分析方法能够满足全分析加和的要求,符合DZ/T0130—2006《地质矿产实验室测试质量管理规范》规定的一级标准。
表 7 全分析加和结果Table 7. Analytical results of sam additivity标准物质和样品编号 烧失量 主量元素和稀土元素测定值(%) 加和
(%)GBW07187 5.42 94.51 99.93 GBW07188 5.53 94.36 99.89 GBW07158 6.73 93.00 99.73 GBW07159 3.70 96.39 100.09 GBW07160 3.77 96.08 99.85 GBW07161 6.80 92.61 99.41 HC-XT-1 3.19 96.58 99.77 HC-XT-2 3.36 96.18 99.55 HC-XT-3 5.00 94.90 99.90 HC-XT-4 6.42 93.21 99.63 HC-XT-5 5.35 94.52 99.87 HC-XT-6 5.43 94.70 100.13 HC-XT-7 6.59 93.00 99.59 HC-XT-8 3.64 95.93 99.57 GX-TC-F2 7.48 93.15 100.63 GX-TC-F4 5.38 94.76 100.14 GX-DB-F1 5.85 94.27 100.12 GX-DB-F2 6.02 94.59 100.61 GX-DB-F3 3.55 96.55 100.10 GX-DB-F4 3.57 96.29 99.86 GX-DB-F5 3.65 96.53 100.18 XF-WX-F3 7.13 93.28 100.41 3. 结论
通过配制人工标准样品,解决了现有国家标准物质不能满足稀土矿样品等复杂类型样品中主量元素和稀土元素的定量问题。通过加入高纯氧化镧、氧化铈和氧化钇与碳酸盐标准样品混合,配制人工标准样品扩大了La、Ce和Y的定量范围。对稀土标准物质、人工标准样品和未知稀土样品进行反测,测定结果未采用归一化处理,元素的精密度和全分析加和结果都比较理想。本方法有效地扩大了XRF方法的适用范围。
致谢: 感谢中国地质科学院地质力学研究所硕士研究生周振凯提供绘图帮助。 -
图 4 (a) 内蒙古锡盟地下水总碘含量等值线分布图;(b)新疆塔城地下水总碘含量等值线分布图(X坐标为经度,Y坐标为纬度)
Figure 4. (a) The isoline map of total iodine content in groundwater in Xilingol League, Inner Mongolia; (b) The isoline map of total iodine content in groundwater in Tacheng, Xinjiang Autonomous Region (X coordinate is longitude, Y coordinate is latitude)
-
Cui S L, Liu P, Su X H, et al.Surveys in areas of high risk of iodine deficiency and iodine excess in China, 2012-2014:Current status and examination of the relationship between urinary iodine concentration and goiter prevalence in Children aged 8-10 years[J].Biomedical and Environmental Sciences, 2017, 30(2):88-96. http://www.sciencedirect.com/science/article/pii/S0895398817300375
Andersen S, Iversen F, Terpling S, et al.Iodine deficiency influences thyroid autoimmunity in old age-A comparative population-based study[J].Maturitas, 2012, 71:39-43. doi: 10.1016/j.maturitas.2011.10.001
Chao H, Zhang Y F, Liu P, et al.Relationship between iodine content in household iodized salt and thyroid volume distribution in children[J].Biomedical and Environmental Sciences, 2016, 29(6):391-397. https://www.researchgate.net/publication/309259063_Relationship_between_Iodine_Content_in_Household_Iodized_Salt_and_Thyroid_Volume_Distribution_in_Children
Weng H X, Hong C L, Yan A L, et al.Biogeochemical transport of iodine and its quantitative model[J].Science China:Earth Sciences, 2013, 56:1599-1606. doi: 10.1007/s11430-013-4594-5
Aslami A A, Ansari M A, Khalique N, et al.Iodine deficiency in school children in Aligarh district, India[J]. Indian Pediatrics, 2016, 53(8):742-743. https://www.indianpediatrics.net/Epub01062016/RL-00009.pdf
吴飞, 王曾祺, 童秀娟, 等.我国典型地区浅层高碘地下水分布特征及其赋存环境[J].水资源与水工程学报, 2017, 28(2):99-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404021.htm Wu F, Wang Z Q, Tong X J, et al.The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China[J]. Journal of Water Resources & Water Engineering, 2017, 28(2):99-104. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404021.htm
Togo Y S, Takahashi Y, Amano Y, et al.Age and spe-ciation of iodine in groundwater and mudstones of the horonobe area, Hokkaido, Japan:Implications for the origin and migration of iodine during basin evolution[J].Geochimica et Cosmochimica Acta, 2016, 191:165-186. doi: 10.1016/j.gca.2016.07.012
Schwehr K A, Santschi P H.Sensitive determination of iodine species, including organo-iodine, for fresh water and seawater samples using high performance liquid chromatography and spectrophoto metric detection[J].Analytica Chimica Acta, 2003, 482:59-71. doi: 10.1016/S0003-2670(03)00197-1
Zhang S J, Chen X, Creeley D, et al.Iodine-129 and iodine-127 speciation in groundwater at the Hanford Site, U.S.:Iodate incorporation into calcite[J].Environmental Science & Technology, 2013, 47:9635-9642. http://www.academia.edu/14345031/Response_to_Comment_on_Iodine-129_and_Iodine-127_Speciation_in_Groundwater_at_Hanford_Site_U.S._Iodate_Incorporation_into_Calcite_
Li J X, Wang Y X, Guo W, et al.Iodine mobilization in groundwater system at Datong Basin, China:Evidence from hydrochemistry and fluorescence characteristics[J].Science of the Total Environment, 2014, 468-469:738-745. doi: 10.1016/j.scitotenv.2013.08.092
Romarís-Hortas V, Bianga J, Moreda-Piñeiro A, et al.Speciation of iodine-containing proteins in Nori seaweed by gel electrophoresis laser ablation ICP-MS[J].Talanta, 2014, 127:175-180. doi: 10.1016/j.talanta.2014.04.003
刘列钧, 王海燕, 李秀维, 等.我国水源型高碘地区水碘形态的研究[J].疾病监测, 2012, 27(11):891-893. doi: 10.3784/j.issn.1003-9961.2012.11.015 Liu L J, Wang H Y, Li X W, et al.Research on forms of iodine in water in areas with rich iodine in water in China[J].Disease Surveillance, 2012, 27(11):891-893. doi: 10.3784/j.issn.1003-9961.2012.11.015
Zhang E Y, Wang Y Y, Qian Y, et al.Iodine in ground-water of the North China Plain:Spatial patterns and hydrogeochemical processes of enrichment[J].Journal of Geochemical Exploration, 2013, 135:40-53. doi: 10.1016/j.gexplo.2012.11.016
Li J X, Wang Y X, Xie X J, et al.Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J].Journal of Hydrology, 2016, 543:293-304. doi: 10.1016/j.jhydrol.2016.10.002
谭俊, 朱霞萍, 刘苗苗, 等.紫外光谱法同时测定卤水海产品中I-和IO3-[J].光谱学与光谱分析, 2015, 35(6):1628-1632. doi: 10.3964/j.issn.1000-0593(2015)06-1628-05 Tan J, Zhu X P, Liu M M, et al.Determination of iodine and iodate in brine and seafood simultaneously by ultraviolet absorption spectrometry[J].Spectroscopy and Spectral Analysis, 2015, 35(6):1628-1632. doi: 10.3964/j.issn.1000-0593(2015)06-1628-05
刘崴, 杨红霞, 李冰, 等.乙醇增强-电感耦合等离子体质谱法测定植物样品中的痕量碘[J].分析试验室, 2010, 29(6):31-33. http://d.wanfangdata.com.cn/Periodical/fxsys201006008 Liu W, Yang H X, Li B, et al.Determination of iodine concentration in plant samples by inductively coupled plasma mass spectrometry with ethanol as a signal enhancer[J].Chinese Journal of Analysis Laboratory, 2010, 29(6):31-33. http://d.wanfangdata.com.cn/Periodical/fxsys201006008
Liu L J, Li X W, Wang H Y, et al.Reduction of iodate in iodated salt to iodide during cooking with iodine as measured by an improved HPLC/ICP-MS Method[J].Journal of Nutritional Biochemistry, 2017, 42:95-100. doi: 10.1016/j.jnutbio.2016.12.009
Yang H X, Liu W, Li B, et al.Speciation analysis for iodine in groundwater using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS)[J].Geostandards and Geoanalytical Research, 2007, 31(4):345-351. doi: 10.1111/ggr.2007.31.issue-4
刘崴, 杨红霞, 李冰, 等.高效液相色谱-电感耦合等离子体质谱测定地下水中碘形态稳定[J].分析化学, 2007, 35(4):571-574. http://online.analchem.cn:8080/fxhx/CN/abstract/abstract6439.htm Liu W, Yang H X, Li B, et al.Study on speciation stabilities of iodine in underground water by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2007, 35(4):571-574. http://online.analchem.cn:8080/fxhx/CN/abstract/abstract6439.htm
李冰, 杨红霞, 刘崴, 等.溴、碘、砷、镉等有益有害元素元素形态分析技术及生态环境地球化学应用[J].地球学报, 2013, 34(4):395-400. doi: 10.3975/cagsb.2013.04.02 Li B, Yang H X, Liu W, et al.The speciation analysis of such elements as bromine, iodine, arsenic and cadmium and their application in environmental geochemistry[J].Acta Geoscientica Sinica, 2013, 34(4):395-400. doi: 10.3975/cagsb.2013.04.02
杨红霞, 陈俊良, 高津旭, 等.利用傅立叶变换离子回旋共振质谱测定不同季节水源水中天然有机质分子结构[J].生态学杂志, 2017, 36(4):1053-1059. http://www.cje.net.cn/CN/abstract/abstract8040.shtml Yang H X, Chen J L, Gao J X, et al.Characterization of molecular composition and seasonal variation of NOM in source water using Fourier transform ion cyclotron resonance mass spectrometry[J].Chinese Journal of Ecology, 2017, 36(4):1053-1059. http://www.cje.net.cn/CN/abstract/abstract8040.shtml
刘崴, 杨红霞, 李冰.电感耦合等离子体质谱在高碘区碘含量分布特征中的应用[J].内蒙古师范大学学报(自然科学汉文版), 2014, 43(6):703-707. http://www.cqvip.com/QK/95820X/201406/663323062.html Liu W, Yang H X, Li B.Application of inductively coupled plasma mass spectrometry in the study of iodine distribution in a high iodine content area[J].Journal of Inner Mongolia Normal University (Natural Science Edition), 2014, 43(6):703-707. http://www.cqvip.com/QK/95820X/201406/663323062.html
徐芬, 马腾, 石柳, 等.内蒙古河套平原高碘地下水的水文地球化学特征[J].水文地质工程地质, 2012, 39(5):8-15. http://d.wanfangdata.com.cn/Periodical/swdzgcdz201205002 Xu F, Ma T, Shi L, et al.Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J].Hydrogeology & Engineering Geology, 2012, 39(5):8-15. http://d.wanfangdata.com.cn/Periodical/swdzgcdz201205002
Li J X, Zhou H l, Qian K, et al.Fluoride and iodine enrichment in groundwater of North China Plain:Evidences from speciation analysis and geochemical modeling[J].Science of the Total Environment, 2017, 598:239-248. doi: 10.1016/j.scitotenv.2017.04.158
王妍妍, 马腾, 董一慧, 等.内陆盆地区高碘地下水的成因分析:以内蒙古河套平原杭锦后旗为例[J].地学前缘, 2014, 21(4):66-73. http://www.cqvip.com/QK/98600X/201404/49830511.html Wang Y Y, Ma T, Dong Y H, et al.The formation of inland-high-iodine groundwater:A case study in Hangjinhouqi, Hetao Plain[J].Earth Science Frontiers, 2014, 21(4):66-73. http://www.cqvip.com/QK/98600X/201404/49830511.html
Duan L, Wang W K, Sun Y B, et al.Iodine in ground-water of the Guanzhong Basin, China:Sources and hydrogeo chemical controls on its distribution[J].Environment Earth Science, 2016, 75(11):1-11.
Li J X, Wang Y X, Xie X J, et al.Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J].Journal of Hydrology, 2016, 543:293-304. doi: 10.1016/j.jhydrol.2016.10.002
钱永, 张兆吉, 费宇红, 等.华北平原饮用地下水碘分布及碘盐分区供应探讨[J].生态与农村环境学报, 2014, 30(1):9-14. http://d.wanfangdata.com.cn/Periodical/ncsthj201401002 Qian Y, Zhang Z J, Fei Y H, et al.Spatial distribution of iodine in underground drinking water and discussion on region-specific supply of iodized salt in the North China Plain[J].Journal of Ecology and Rural Environment, 2014, 30(1):9-14. http://d.wanfangdata.com.cn/Periodical/ncsthj201401002
Li J X, Wang Y X, Guo W, et al.Factors controlling spatial variation of iodine species in groundwater of the Datong Basin, Northern China[J].Procedia Earth and Planetary Science, 2013, 7:483-486. doi: 10.1016/j.proeps.2013.03.054
李洪伟, 刘晓端, 李保山.地下水和土壤中不同形态碘的分离测定[J].岩矿测试, 2009, 28(4):337-341. http://www.ykcs.ac.cn/article/id/ykcs_20090407 Li H W, Liu X D, Li B S.Separation and determination of different iodine species in ground water and soil samples[J].Rock and Mineral Analysis, 2009, 28(4):337-341. http://www.ykcs.ac.cn/article/id/ykcs_20090407
-
期刊类型引用(6)
1. 孙成阳,陆太进,宋中华,何明跃,邓怡. 津巴布韦金刚石中石墨包裹体及金刚石异常双折射特征分析. 岩矿测试. 2022(02): 199-210 . 本站查看
2. 赵畅,王海阔,刘迎新. 一种高温高压合成钻石原石的宝石学及谱学特征研究. 中国宝玉石. 2022(06): 2-14 . 百度学术
3. 宋中华,陆太进,唐诗,高博,苏隽,柯捷. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征. 岩矿测试. 2020(01): 85-91 . 本站查看
4. 罗跃平,陈晶晶. 紫外-可见光谱具480 nm吸收的黄色钻石的宝石学特征. 宝石和宝石学杂志(中英文). 2020(05): 39-43 . 百度学术
5. 周宏,金绪广,黄文清,王磊. 钻石的红外光谱表征及其鉴定意义. 超硬材料工程. 2020(05): 18-25 . 百度学术
6. 唐诗,苏隽,陆太进,马永旺,柯捷,宋中华,张钧,张晓玉,代会茹,李海波,张健,吴旭旭,刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试. 2019(01): 62-70 . 本站查看
其他类型引用(6)