Research Progress on the Effect of Salts on the Stability of Methane Hydrate
-
摘要: 甲烷水合物稳定性主要控制着甲烷水合物稳定带的厚度,温度、压力、孔隙水盐度和气体组分等因素影响着水合物稳定带的厚度。甲烷水合物的形成与地层水关系密切,而地层水中的各种盐离子(Cl-、Na+、Mg2+、SO42-、Ca2+)以及过渡金属(Fe、Mn、Cu、Co、Ni等)会影响天然气水合物的形成和分解条件。因此,研究盐类对甲烷水合物的稳定性认识有助于更加深入了解天然气水合物的成藏条件。本文分析了氯化物、硫酸盐、碳酸盐三大盐类对甲烷水合物稳定性的影响:同一盐类不同盐度条件下,随着盐度的增加,甲烷水合物相平衡曲线向低温高压偏移。总结了不同盐类和阴阳离子对甲烷水合物的抑制作用大小:在相同浓度、不同盐类条件下,盐类浓度在1.0~1.5 mol/L时盐类对甲烷水合物的抑制作用大小为MgCl2 > CaCl2 > NaCl > KCl,盐类浓度大于1.5 mol/L时CaCl2的抑制作用较强;阴离子对甲烷水合物的抑制作用大小争议较大,阳离子中Mg2+对甲烷水合物的抑制作用最强。从目前的研究成果来看,已有数据与实际地质条件还存在一定差距,需要在真实实验条件下加强氯化物-硫酸盐-碳酸盐-甲烷-水体系的详细研究。本文提出,将高压可视反应腔与显微激光拉曼技术相结合,有望准确获取天然气水合物稳定形成时的温压条件,明确盐类和阴阳离子的抑制作用大小,以及盐类和离子特性如何影响水合物的形成和稳定,以便为未来的水合物勘探开发提供参考。要点
(1) 系统总结了氯化物、硫酸盐、碳酸盐对甲烷水合物稳定性的影响和研究甲烷水合物相平衡的方法。
(2) 对比了同一浓度氯化物、硫酸盐、碳酸盐和阴阳离子对甲烷水合物的抑制作用大小。
(3) 提出了未来开展实验研究应当与实际地层情况结合,开展更加系统的研究。
HIGHLIGHTS(1) The effects of chloride, sulfate and carbonate on the stability of methane hydrate and the methods of studying the phase equilibrium of methane hydrate were systematically summarized.
(2) The inhibition effect of the same concentration of chloride, sulfate, carbonate and anion and cation on methane hydrate was compared.
(3) It was proposed that future experimental research should be combined with the actual formation conditions to carry out a more systematic study.
Abstract: The thickness of the methane hydrate stable zone is mainly controlled by the stability of methane hydrate. The temperature, pressure, pore water salinity, and gas component affect the thickness of the hydrate stable zone. The formation of methane hydrate is closely related to the formation of water. Various salt ions in formation water (Cl-, Na+, Mg2+, SO42-, Ca2+, and transition metals Fe, Mn, Cu, Co, Ni) can affect the formation and decomposition conditions of natural gas hydrate. Therefore, studying the effect of salts on the stability of methane hydrates is helpful to better understand the reservoir-forming conditions of methane hydrate. The effects of chloride, sulfate and carbonate on the stability of methane hydrate are evaluated in this paper. With the increase of salinity, the phase equilibrium curve of methane hydrate migrates to low temperature and high pressure under the same salinity condition. The inhibitory effects of different salts and anion and cation on methane hydrate are summarized. Under conditions of the same concentration and different types of salts, when the concentration of salt ranges from 1 to 1.5 mol/L, the inhibition effect of salt on methane hydrate is MgCl2 > CaCl2 > NaCl > KCl. When the concentration of salt is larger than 1.5 mol/L, the inhibitory effect of CaCl2 on methane hydrate is stronger. The inhibitory effect of anions on methane hydrate is controversial, and the inhibitory effect of Mg2+ on methane hydrate is the strongest. From available research results, there is still a gap between the existing data and the actual geological conditions. It is necessary to strengthen the detailed study on chloride-sulfate-carbonate-methane-water systems under actual experimental conditions. It is proposed that the combination of the high-voltage visual reaction chamber with Micro Laser Raman Spectroscopy is likely to accurately obtain the stable temperature and pressure conditions of gas hydrate formation, clarify the inhibitory effect of cations and anions, and understand how salts and ion affect the formation of hydrate and its stability, which will provide reference for the future exploration and development of hydrate.-
Keywords:
- salts /
- methane hydrate /
- phase equilibrium /
- stability
-
油井岩心是发现油气层和研究地层结构的重要资料,其中汞的富集和扩散是岩心分析的一个重要指标[1]。在原油加工过程中,砷会影响催化剂的活性[2]。在地质找矿中,汞和砷也是重要指示元素[3]。石油钻探往往达到几千米的深度,需要投入巨大的人力和物力,测定油井岩心中汞和砷的含量,能够同时为石油钻探和地质找矿提供技术服务,达到节约高效的目标。
汞和砷的测定方法有滴定法[4]、液相色谱法[5-6]、气相色谱法[7]、电感耦合等离子体发射光谱法[8]、分光光度法[9]、原子吸收光谱法[10-11]、电感耦合等离子体质谱法[12-13]、便携式仪器测定法[14-15]等。王水溶矿-原子荧光光度检测方法因其检出限低、灵敏度高、稳定性好、样品前处理简单而被广泛应用,如苏明跃等[16]采用王水消解-原子荧光光谱法测定矿石中的汞和砷,相对标准偏差在0.93%~8.1%之间;倪润祥等[17]采用湿法消解-原子荧光光谱法测定煤中的硒和砷,砷的相对标准偏差在5.6%~6.0%之间。但是,当采用王水溶解含油岩心时,由于原油的疏水性会造成许多样品漂浮在液面上,或者在溶液中的样品也由于表面原油的包裹与酸接触不充分[18],样品中的部分汞和砷无法被溶解出来,导致检测结果偏低。对于这种样品,传统方法主要通过高温烧制和强酸氧化将有机物分解后再进行溶矿测试。例如,罗荣根[19]利用高温分解载金碳中的汞,结果显示高温会造成汞的损失,导致结果偏低。杨常青等[20]用硝酸-硫酸-氢氟酸分解无烟煤中的汞,由于反应温度较高,敞口溶解造成结果偏低。
索氏提取法是一种可以通过有机溶剂将原油从固体物质中提取分离出来的方法,该方法对原油的提取分离彻底,提取温度低不易造成汞和砷的损失,是对含油岩心中原油进行提取分离的理想选择。本文拟建立一种通过索氏提取法将岩心中的原油提取分离,用50%王水溶解剩余样品中的汞和砷元素,用原子荧光光谱仪测定汞和砷含量的方法。
1. 实验部分
1.1 仪器与工作条件
AFS-9561原子荧光光谱仪(北京海光仪器有限公司);汞、砷空心阴极灯(北京有色金属研究院)。测汞的工作条件为:灯电流30mA,辅助阴极电流0mA(汞灯没有辅助阴极),负高压300mV,载气流量300mL/min,原子化器高度8cm,读数时间12s,读数延迟时间3s,进样量1000μL,还原剂用量1834μL/min。测砷的工作条件为:灯电流30mA,辅助阴极电流15mA,负高压270mV,载气流量300mL/min,原子化器高度10cm,读数时间12s,读数延迟时间3s,进样量500μL,还原剂用量1000μL/min。
索氏提取器(100mL,沈阳市昌昊玻璃仪器有限公司);RE-52A旋转蒸发仪(上海亚荣生化仪器厂)。
1.2 标准溶液和主要试剂
砷、汞标准储备液(中国计量科学研究院,100μg/mL)。
汞标准系列溶液(0、0.05、0.20、0.50、1.50、3.00、5.00μg/L):由汞标准储备液用含重铬酸钾(0.5g/L)的10%硝酸逐级稀释至所需浓度[21]。
砷标准系列溶液(0、0.5、2、5、15、50、100.00μg/L):由砷标准储备液用10%盐酸逐级稀释至所需浓度。
氯仿;硝酸;盐酸;氢氧化钠;硼氢化钾;抗坏血酸;硫脲;抗坏血酸-硫脲混合溶液(抗坏血酸浓度50g/L,硫脲浓度50g/L);还原剂溶液(硼氢化钾浓度20g/L,氢氧化钠浓度5g/L);载流溶液(5%盐酸)。以上试剂均为分析纯,水为超纯水。
1.3 实验方法
1.3.1 样品的前处理
选取油井含油层原油含量差异明显的4个岩心样品作为实验对象,编号为SY-1、SY-2、SY-3和SY-4。称取样品5g(粒径≤75μm)于滤纸筒中,将滤纸筒包好,放入索氏提取器中,向底瓶加入氯仿100mL,在75℃下提取8h,冷却,将提取液浓缩至5mL,转移至称量瓶中,室温挥发至干,称取抽提物质量。取出纸筒中岩心样品,晾干,待测[22]。
称取提取过的样品0.2500g于25mL比色管中,用水润湿,加入50%王水10mL,摇匀,在沸水浴中加热2h,中间摇匀2次[23],取出,冷却,定容至刻度,摇匀,放置过夜,待测。同时进行空白实验。
1.3.2 样品测定
移取上层清液10mL于样品管中,对汞进行测定。移取上层清液2.5mL于25mL比色管中,加入盐酸5mL,加入抗坏血酸-硫脲混合溶液5mL,摇匀,静置反应1h以上,对砷进行测定。
2. 结果与讨论
2.1 样品中原油含量的影响
称取含油岩心平行样品SY-1两份,一份经过索氏提取,一份未经过索氏提取,同时用50%王水加热分解,定容,两种处理所得的溶液如图 1所示,两种溶液中汞和砷测定结果见表 1。由图 1可见,对于未经过提取的样品溶液,由于原油的疏水性,许多样品漂浮在液面上,与酸接触不充分。与经过提取的样品溶液相比,未经过提取的样品溶液颜色明显偏淡,这主要是因为原油在溶矿过程中被氧化而消耗部分王水[24],导致王水中的氯化亚硝酰减少,氧化性变弱。由表 1检测结果对比可得,未经过提取的样品由于与酸接触不充分以及王水溶液氧化性变弱,导致汞和砷检测结果偏低。通过索氏提取法用氯仿对样品中的原油进行提取后,样品完全浸入王水溶液中,溶液颜色也显示为强氧化性的黄色,汞和砷检测结果明显增大。
表 1 经过提取和未经过提取的汞和砷的测定结果对比Table 1. Comparison of analytical results of Hg and As in the extracted and unextracted samples样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg) 未经过提取 经过提取 未经过提取 经过提取 SY-1 0.078 0.065 0.105 19.3 24.4 SY-2 0.134 0.044 0.114 16.4 26.5 SY-3 0.033 0.076 0.108 18.3 22.4 SY-4 0.254 0.049 0.128 12.3 31.5 2.2 提取条件的选择
2.2.1 提取溶剂
在常用有机溶剂中,对原油具有高溶解度的主要有甲苯、石油醚、正己烷、氯仿、二硫化碳、二氯甲烷、辛烷、庚烷等[25-26]。通过毒性和溶解性的筛查,以石油醚、正己烷和氯仿作为提取的备选溶剂进行实验。由表 2测定结果可得,氯仿的提取能力最强,石油醚次之,正己烷最弱,所以选择氯仿作为提取剂。
表 2 不同溶剂提取原油的结果对比Table 2. Comparison of crude oil extracted by different solvents样品编号 氯仿
(g)相对提取率
(%)石油醚
(g)相对提取率
(%)正己烷
(g)相对提取率
(%)SY-1 0.0777 100 0.0748 96.3 0.0722 92.9 SY-2 0.1336 100 0.1242 93.0 0.1205 90.2 SY-3 0.0328 100 0.0302 92.1 0.0284 86.6 SY-4 0.2536 100 0.2311 91.1 0.2206 87.0 2.2.2 提取温度
索氏提取法是一种利用虹吸效应对固体物质中的有机物进行多次提取的方法。提取温度越高,在一定时间内提取的次数越多,提取效率越高,但是溶剂的损失也越严重[27],对于本研究也会引起汞和砷的损失,进而导致测得浓度值偏低。综合考虑,将提取速度控制在3次/h,对应的水浴温度为75℃。
2.2.3 提取时间
索氏提取的基本原理是连续多次萃取,这就决定了萃取物含量越高的样品往往需要更长的萃取时间[28-29],因此选择原油含量最高的SY-4样品作为萃取时间实验的对象。将提取温度设置为75℃,分别测定提取时间为1、2、3、4、5、6、7、8、9和10h时样品中汞和砷的含量。由图 2测定结果得知,随着提取时间的延长,汞和砷的测定值越来越大。这主要是因为随着样品中原油越来越多地被溶剂提取分离,其中的汞和砷更多地被王水溶解。但是,当提取时间大于8h时,汞的测定值有明显下降的趋势,这是因为长时间的高温回流造成了汞的挥发损失[30],所以将提取时间设置为8h。
2.3 方法技术指标
2.3.1 检出限和线性范围
对一个汞和砷含量都很低的沉积物标准物质GBW07121(砷认定值0.25mg/kg,汞认定值0.0040mg/kg)进行7次平行实验,测得汞含量分别为0.0043、0.0038、0.0068、0.0053、0.0061、0.0044、0.0046mg/kg,计算汞的方法检出限为0.003mg/kg,测得砷含量分别为0.25、0.20、0.34、0.26、0.29、0.24、0.27mg/kg,计算砷的方法检出限为0.10mg/kg。
通过标准系列溶液的测定可得本方法在汞含量为0.010~0.50mg/kg具有良好的线性,相关系数为0.9998;在砷含量为0.25~50mg/kg具有良好的线性,相关系数为0.9998。
2.3.2 精密度和回收率
对未经过提取分离、经过高氯酸处理和经过提取分离的样品SY-1分别进行7次平行实验,测得结果见表 3。对比可知,未经过提取分离的测定精密度很差,这主要是因为对于未提取的样品,在溶矿过程中,由于原油的疏水性导致许多样品漂浮在液面上方[31],随着王水的沸腾,部分样品被随机浸入溶液中,其中的汞和砷不定量地溶解出来。对于经过高氯酸处理的样品,由于部分原油组分不能被高氯酸完全碳化[32],在溶矿过程中仍有小部分样品漂浮在液面上,造成测定结果精密度较差。而经过有机溶剂的提取后,由于原油被完全分离提取,样品沉入王水底部,其中的汞和砷被王水完全溶解,方法精密度有了很大提高。
表 3 精密度实验结果Table 3. Precision tests of the method样品处理 元素 分次测定值(mg/kg) RSD(%) 未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
30.061 0.086 0.03533.0 As 15.3 11.4 14.2 18.7
17.0 20.1 9.6725.0 高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
0.089 0.094 0.07115.0 As 22.1 21.6 18.7 20.7
22.2 23.6 18.59.0 经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
0.104 0.092 0.1147.3 As 24.4 26.5 23.2 23.5
25.6 24.1 25.95.1 对样品SY-1进行三种浓度的加标实验,测得结果见表 4。在三种不同加标浓度下,加标回收率均在92.5%以上。这说明提取过程造成汞和砷的损失较小,样品溶解完全,该方法具有良好的准确度。
表 4 加标回收实验结果Table 4. Spiked recovery tests of the method实验序号 元素 样品浓度
(mg/kg)加标浓度
(mg/kg)测得浓度
(mg/kg)回收率
(%)1 Hg 0.105 0.200 0.296 95.5 As 24.4 50.0 72.4 96.0 2 Hg 0.105 0.100 0.199 94.0 As 24.4 25.0 48.1 94.8 3 Hg 0.105 0.040 0.142 92.5 As 24.4 10.0 33.8 94.0 3. 结论
本文建立了用索氏提取法低温提取分离含油岩心中的原油,用50%王水溶解剩余样品,再采用原子荧光光谱测定汞和砷含量的方法。本方法避免了由于原油的疏水性造成样品与王水接触不充分、分解不完全和反应温度过高造成汞元素损失的问题,与传统方法相比较,具有精密度好、准确度高的优点,可为含油岩心中其他元素的检测提供借鉴。
-
-
Sloan Jr E D, Koh C.Clathrate Hydrates of Natural Gases (The Third Edition)[M].New York:CRC Press, 2007:1-2.
Udachin K A, Ripmeester J A.A complex clathrate hydrate structure showing bimodal guest hydration[J].Nature, 1999, 397:420-423. doi: 10.1038/17097
Sloan Jr E D, Koh C.Clathrate Hydrates of Natural Gases (The Second Edition)[M].New York:CRC Press, 1998:223-224.
Kvenvolden K A, Lorenson T D.The global occurrence of natural gas hydrates[J].American Geophysical Union, 2001, 124:3-18. doi: 10.1029/GM124p0003/summary
Milkov A V.Global estimates of hydrate-bound gas in marine sediments:How much is really out there?[J].Earth-Science Reviews, 2004, 66(3):183-197. https://www.sciencedirect.com/science/article/pii/S0012825203001296
Song Y, Yang L, Zhao J, et al.The status of natural gas hydrate research in China:A review[J].Renewable and Sustainable Energy Reviews, 2014, 31:778-791. doi: 10.1016/j.rser.2013.12.025
何勇, 苏正, 吴能友.海底天然气水合物稳定带厚度的影响因素[J].海洋地质前沿, 2012, 28(5):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201205008.htm He Y, Su Z, Wu N Y.Factors influencing the thickness of gas hydrate stability zone in marine sediments[J].Marine Geology Frontiers, 2012, 28(5):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201205008.htm
Sun C Y, Li W Z, Yang X, et al.Progress in research of gas hydrate[J].Chinese Journal of Chemical Engineering, 2011, 19(1):151-162. doi: 10.1016/S1004-9541(09)60192-0
宋海斌, 耿建华, Wang How-Kin, 等.南海北部东沙海域天然气水合物的初步研究[J].地球物理学报, 2001, 44(5):687-695. http://www.oalib.com/paper/5024403 Song H B, Geng J H, Wang H K, et al.A preliminary study of gas hydrates in Dongsha region north of South China Sea[J].Chinese Journal of Geophysics, 2001, 44(5):687-695. http://www.oalib.com/paper/5024403
Lu S M.A global survey of gas hydrate development and reserves:Specifically in the marine field[J].Renewable and Sustainable Energy Reviews, 2015, 41(C):884-900. https://www.sciencedirect.com/science/article/pii/S1364032114007497
Nisbet E G, Piper D J W.Giant submarine landslides[J].Nature, 1998, 392(6674):329-330. doi: 10.1038/32765
Bains S, Corfield R M, Norris R D.Mechanisms of climate warming at the end of the Paleocene[J].Science, 1999, 285(5428):724-727. doi: 10.1126/science.285.5428.724
Matsumoto R, Uchida T, Waseda A, et al. Occurrence, Structure and Composition of Natural Gas Hydrate Recovered from the Blake Ridge, Northwest Atlantic[R]. Proceedings of Ocean Drill Program Science Results, 2000: 13-28. https://www.sciencedirect.com/science/article/pii/S0025322707001387
Kvenvolden K A, Lorenson T D. The Global Occurrence of Natural Gas Hydrate[R]//Natural Gas Hydrates: Occurrence, Distribution, and Detection[J]. 2001: 3-18. doi: 10.1029/GM124
金春爽, 汪集旸, 张光学.南海天然气水合物稳定带的影响因素[J].矿床地质, 2005, 24(4):388-397. Jin C S, Wang J Y, Zhang G X.Factors affecting natural gas hydrate stability zone in the South China Sea[J].Mineral Deposits, 2005, 24(4):388-397.
王宏斌, 梁劲, 龚跃华, 等.基于天然气水合物地震数据计算南海北部陆坡海底热流[J].现代地质, 2005, 19(1):67-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200501010 Wang H B, Liang J, Gong Y H, et al.Estimation of the heat flow in the northern of the South China Sea based on the seismic data of gas hydrate[J].Geoscience, 2005, 19(1):67-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200501010
张金华, 魏伟, 张吝文.海底天然气水合物相平衡及稳定带的影响分析[J].化学工程与装备, 2011(1):39-42. http://www.docin.com/p-503637209.html Zhang J H, Wei W, Zhang L W.Analysis of phase equilibrium and stability zone of gas hydrate in submarine[J].Chemical Engineering & Equipment, 2011(1):39-42. http://www.docin.com/p-503637209.html
Booth J S, Winters W J, Dillon W P, et al.Major Occurrences and Reservoir Concepts of Marine Clathrate Hydrates:Implications of Field Evidence[M].London:Woods Hole Coastal and Marine Science Center, 1998:113-127.
许威, 邱楠生, 孙长宇, 等.不同因素对天然气水合物稳定带厚度的影响[J].天然气地球科学, 2010, 21(3):528-534. http://www.oalib.com/paper/5025031 Xu W, Qiu N S, Sun C Y, et al.Different factors on the thickness of gas hydrate stability zone[J].Natural Gas Geoscience, 2010, 21(3):528-534. http://www.oalib.com/paper/5025031
Milkov A V, Sassen R.Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope[J].Marine and Petroleum Geology, 2000, 17(9):981-991. doi: 10.1016/S0264-8172(00)00051-9
Milkov A V, Sassen R.Economic geology of offshore gas hydrate accumulations and provinces[J].Marine & Petroleum Geology, 2002, 19(1):1-11. https://www.sciencedirect.com/science/article/pii/S0264817201000472
杨顶辉, Xu Wenyue.盐度对甲烷气水合物系统的影响[J].中国科学(D辑), 2007, 37(10):1370-1381. http://www.cqvip.com/QK/98491X/200710/25632584.html Yang D H, Xu W Y.Effects of salinity on methane hydrate system[J].Scientia Sinica (Terrae), 2007, 37(10):1370-1381. http://www.cqvip.com/QK/98491X/200710/25632584.html
Handa Y P.Effect of hydrostatic pressure and salinity on the stability of gas hydrates[J].Journal of Physical Chemistry, 1990, 94:2652-2657. doi: 10.1021/j100369a077
Sylva T Y, Kinoshita C K, Masutani S M.Inhibiting effects of transition metal salts on methane hydrate stability[J].Chemical Engineering Science, 2016, 155:10-15. doi: 10.1016/j.ces.2016.06.028
Sun S C, Kong Y Y, Zhang Y, et al.Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J].The Journal of Chemical Thermodynamics, 2015, 90:116-121. doi: 10.1016/j.jct.2015.06.030
Villard M.Sur les hydrates de méthane et d'éthylène[J].Comptes Rendus, 1888, 107:257.
Deaton W M, Frost Jr E M. Gas Hydrates and Their Relation to the Operation of Natural-gas Pipe Lines[R]. Bureau of Mines, Amarillo, TX (USA): Helium Research Center, 1946.
de Roo J L, Peters C J, Lichtenthaler R N, et al.Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure[J].AIChE Journal, 1983, 29(4):651-657. doi: 10.1002/(ISSN)1547-5905
Millero F J, Feistel R, Wright D G, et al.The com-position of standard seawater and the definition of the reference-composition salinity scale[J].Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2008, 55(1):50-72. doi: 10.1016/j.dsr.2007.10.001
Aparicio-González A, Duarte C M, Tovar-Sánchez A.Trace metals in deep ocean waters:A review[J].Journal of Marine Systems, 2012, 100:26-33. https://www.sciencedirect.com/science/article/pii/S0924796312000905
Ross M J, Toczylkin L S.Hydrate dissociation pressures for methane or ethane in the presence of aqueous solutions of triethylene glycol[J].Journal of Chemical and Engineering Data, 1992, 37(4):488-491. doi: 10.1021/je00008a026
Kang S P, Chun M K, Lee H.Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2 solutions[J].Fluid Phase Equilibria, 1998, 147(1):229-238. https://www.sciencedirect.com/science/article/pii/S0378381298002337
Jager M D, Sloan E D.The effect of pressure on methane hydration in pure water and sodium chloride solutions[J].Fluid Phase Equilibria, 2001, 185(1):89-99. https://www.sciencedirect.com/science/article/pii/S0378381201004599
van der Waals J H, Platteeuw J C. Clathrate Solutions[M]//Prigogine Ⅰ: Advances in Chemical Physics Ⅱ. New York, 1959.
Duan Z, Li D, Chen Y, et al.The influence of temper-ature, pressure, salinity and capillary force on the formation of methane hydrate[J].Geoscience Frontiers, 2011, 2(2):125-135. doi: 10.1016/j.gsf.2011.03.009
Tishchenko P, Hensen C, Wallmann K, et al.Calculation of the stability and solubility of methane hydrate in seawater[J].Chemical Geology, 2005, 219(1):37-52. https://www.sciencedirect.com/science/article/pii/S0009254105000914
Chin H Y, Lee B S, Chen Y P, et al.Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids[J].Industrial & Engineering Chemistry Research, 2013, 52(47):16985-16992. http://conf.semnan.ac.ir/uploads/nicgh1392/articles/7224.pdf
Parrish W R, Prausnitz J M.Dissociation pressures of gas hydrates formed by gas mixtures[J].Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1):26-35. doi: 10.1021/i260041a006
Rashid S, Fayazi A, Harimi B, et al.Evolving a robust approach for accurate prediction of methane hydrate formation temperature in the presence of salt inhibitor[J].Journal of Natural Gas Science & Engineering, 2014, 18(2):194-204. https://www.sciencedirect.com/science/article/pii/S1875510014000407
Ng H J, Robinson D B.Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol[J].Fluid Phase Equilibria, 1985, 21(1-2):145-155. doi: 10.1016/0378-3812(85)90065-2
Lee S Y, Holder G D.Model for gas hydrate equilibria using a variable reference chemical potential:Part 1[J].AIChE Journal, 2002, 48(1):161-167. doi: 10.1002/(ISSN)1547-5905
Englezos P, Bishnoi P R.Prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J].AIChE Journal, 1988, 34(10):1718-1721. doi: 10.1002/(ISSN)1547-5905
Shabani M M, Rashtchian D, Ghotbi C, et al.Prediction of hydrate formation for the systems containing single and mixed electrolyte solutions[J].Iranian Journal of Chemistry and Chemical Engineering, 2007, 26(1):35-45. https://www.researchgate.net/publication/285754674_Prediction_of_hydrate_formation_for_the_systems_containing_single_and_mixed_electrolyte_solutions
Javanmardi J, Moshfeghian M, Maddox R N.Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions[J].Energy & Fuels, 1998, 12(2):219-222. doi: 10.1021/ef9701652
Javanmardi J, Moshfeghian M.A new approach for prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J].Fluid Phase Equilibria, 2000, 168(2):135-148. doi: 10.1016/S0378-3812(99)00322-2
孙长宇, 黄强, 陈光进.气体水合物形成的热力学与动力学研究进展[J].化工学报, 2006, 57(5):1031-1039. http://d.wanfangdata.com.cn/Periodical_hgxb200605001.aspx Sun C Y, Huang Q, Chen G J.Progress of thermodynamics and kinetics of gas hydrate formation[J].Journal of Chemical Industry and Engineering (China), 2006, 57(5):1031-1039. http://d.wanfangdata.com.cn/Periodical_hgxb200605001.aspx
Palermo T, Arla D, Borregales M, et al. Study of the Agglomeration between Hydrate Particles in Oil Using Differential Scanning Calorimetry (DSC)[C]//Proceedings of the Fifth International Conference on Gas Hydrates. 2005: 12-16. https://www.sciencedirect.com/science/article/pii/S0009250908003539
Dalmazzone D, Hamed N, Dalmazzone C.DSC measure-ments and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion[J].Chemical Engineering Science, 2009, 64(9):2020-2026. doi: 10.1016/j.ces.2009.01.028
Thatai S, Khurana P, Prasad S, et al.Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core-shell nanocomposite[J].Talanta, 2015, 134:568-575. doi: 10.1016/j.talanta.2014.11.024
Bonales L J, Muñoz-Iglesias V, Santamaría-Pérez D, et al.Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 116:26-30. doi: 10.1016/j.saa.2013.06.121
Sum A K, Burruss R C, Sloan E D.Measurement of clathrate hydrates via Raman spectroscopy[J].The Journal of Physical Chemistry B, 1997, 101(38):7371-7377. doi: 10.1021/jp970768e
Subramanian S, Sloan Jr E D.Molecular measurements of methane hydrate formation[J].Fluid Phase Equilibria, 1999, 158-160:813-820. doi: 10.1016/S0378-3812(99)00134-X
Chazallon B, Focsa C, Charlou J L, et al.A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites[J].Chemical Geology, 2007, 244(1):175-185. https://www.sciencedirect.com/science/article/pii/S0009254107002598
Uchida A, Jagendorf A T, Hibino T, et al.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J].Plant Science, 2002, 163(3):515-523. doi: 10.1016/S0168-9452(02)00159-0
陈勇, 周瑶琪.天然流体包裹体中甲烷水合物生成条件原位变温拉曼光谱研究[J].光谱学与光谱分析, 2007, 27(8):1547-1550. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract1156.shtml Chen Y, Zhou Y Q.In situ temperature-dependent Raman spectroscopic on methane hydrate formation in natural fluid inclusion[J].Spectroscopy and Spectral Analysis, 2007, 27(8):1547-1550. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract1156.shtml
吕万军, I-Ming Chou, Robert C.Burruss, 等.拉曼光谱原位观测水合物形成后的饱和甲烷浓度[J].地球化学, 2005, 34(2):187-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502012 Lü W J, Chou I M, Burruss R C, et al.In situ observation of variation of methane concentration in water during the growth of hydrate using Raman spectroscopy[J].Geochemica, 2005, 34(2):187-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502012
Hesse R.Pore-water anomalies in gas hydrate-bearing sediments of the deeper continental margins:Facts and problems[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1990, 8(1):117-138. doi: 10.1007/BF01131292
马燕. 盐溶液体系中天然气水合物稳定性的研究[D]. 淄博: 山东理工大学, 2011. Ma Y. Study on the Stability of Natural Gas Hydrates in the Salt Solution System[D]. Zibo: Shandong University of Technology, 2011.
Maekawa T.Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution[J].Geochemical Journal, 2001, 35(1):59-66. doi: 10.2343/geochemj.35.59
Lu H, Matsumoto R.Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments[J].Marine Chemistry, 2005, 93(2):149-157. https://www.sciencedirect.com/science/article/pii/S0304420304002270
Kharrat M, Dalmazzone D.Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry[J].The Journal of Chemical Thermodynamics, 2003, 35(9):1489-1505. doi: 10.1016/S0021-9614(03)00121-6
Atik Z, Windmeier C, Oellrich L R.Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane+ethane) gas mixture in an aqueous solution of (NaCl+MgCl2)[J].Journal of Chemical & Engineering Data, 2006, 51(5):1862-1867. doi: 10.1021/je060225a?src=recsys
Mohammadi A H, Afzal W, Richon D.Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions[J].The Journal of Chemical Thermodynamics, 2008, 40(12):1693-1697. doi: 10.1016/j.jct.2008.06.015
Mohammadi A H, Kraouti I, Richon D.Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions[J].The Journal of Chemical Thermodynamics, 2009, 41(6):779-782. doi: 10.1016/j.jct.2009.01.004
Lu H, Matsumoto R, Tsuji Y, et al.Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution?-A recognition from experimental results[J].Fluid Phase Equilibria, 2001, 178(1):225-232. https://www.sciencedirect.com/science/article/pii/S0378381200004647
宋永臣, 杨明军, 刘瑜, 等.离子对甲烷水合物相平衡的影响[J].化工学报, 2009(6):1362-1366. http://www.lfdongfangliangjie.com/html/info10181030.html Song Y C, Yang M J, Liu Y, et al.Influence of ions on phase equilibrium of methane hydrate[J].Journal of Chemical Industry and Engineering, 2009(6):1362-1366. http://www.lfdongfangliangjie.com/html/info10181030.html
Berecz E, Balla-Achs M.Gas Hydrates[M].New York:Elsevier Science Publishing Company, 1983.
Liu C L, Ye Y G, Sun S C, et al.Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems[J].Science China (Earth Sciences), 2013, 56(4):594-600. doi: 10.1007/s11430-012-4564-3
Dholabhai P D, Englezos P, Kalogerakis N, et al.Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions[J].The Canadian Journal of Chemical Engineering, 1991, 69(3):800-805. doi: 10.1002/cjce.v69:3
刘伟, 金翔龙, 初凤友, 等.海底天然气水合物相平衡的影响因素[J].海洋地质前沿, 2011, 27(5):16-23. http://d.old.wanfangdata.com.cn/Periodical/hgxb200906004 Liu W, Jin X L, Chu F Y, et al.Research on influencing factors of gas hydrate phase equilibrium in marine sediments[J].Marine Geology Frontiers, 2011, 27(5):16-23. http://d.old.wanfangdata.com.cn/Periodical/hgxb200906004
Pieroen A P.Gas hydrates-approximate relations between heat of formation, composition and equilibrium temperature lowering by "inhibitors"[J].Recueil des Travaux Chimiques des Pays-Bas, 1955, 74(8):995-1002. https://www.researchgate.net/publication/229971503_Gas_hydrates-approximate_relations_between_heat_of_formation_composition_and_equilibrium_temperature_lowering_by_inhibitors
Dickens G R, Quinby-Hunt M S.Methane hydrate stability in pore water:A simple theoretical approach for geophysical applications[J].Journal of Geophysical Research:Solid Earth, 1997, 102(B1):773-783. doi: 10.1029/96JB02941
黄子卿.电解质溶液理论导论[M].北京:科学出版社, 1983:49-51. Huang Z Q.Introduction of Theoretical Electrolyte Solution[M].Beijing:Science Press, 1983:49-51.
Sabil K M, Duarte A R C, Zevenbergen J, et al.Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution[J].International Journal of Greenhouse Gas Control, 2010, 4(5):798-805. doi: 10.1016/j.ijggc.2010.05.010
-
期刊类型引用(5)
1. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 . 百度学术
2. 蒙炳坤,李靖,周世新,淡永,张庆玉,聂国权. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源. 天然气地球科学. 2023(04): 647-655 . 百度学术
3. 朱志勇,朱祥坤,杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试. 2020(03): 384-390 . 本站查看
4. 高梓涵,李立武,王玉慧,曹春辉,贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用. 岩矿测试. 2019(05): 469-478 . 本站查看
5. 尚慧. 页岩脱气实验下含气性变化特征研究. 宁波职业技术学院学报. 2018(05): 105-108 . 百度学术
其他类型引用(2)