• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

不同颜色青海软玉微观形貌和矿物组成特征

于海燕, 阮青锋, 孙媛, 李东升

于海燕, 阮青锋, 孙媛, 李东升. 不同颜色青海软玉微观形貌和矿物组成特征[J]. 岩矿测试, 2018, 37(6): 626-636. DOI: 10.15898/j.cnki.11-2131/td.201704250066
引用本文: 于海燕, 阮青锋, 孙媛, 李东升. 不同颜色青海软玉微观形貌和矿物组成特征[J]. 岩矿测试, 2018, 37(6): 626-636. DOI: 10.15898/j.cnki.11-2131/td.201704250066
Hai-yan YU, Qing-feng RUAN, Yuan SUN, Dong-sheng LI. Micro-morphology and Mineral Composition of Different Color Qinghai Nephrites[J]. Rock and Mineral Analysis, 2018, 37(6): 626-636. DOI: 10.15898/j.cnki.11-2131/td.201704250066
Citation: Hai-yan YU, Qing-feng RUAN, Yuan SUN, Dong-sheng LI. Micro-morphology and Mineral Composition of Different Color Qinghai Nephrites[J]. Rock and Mineral Analysis, 2018, 37(6): 626-636. DOI: 10.15898/j.cnki.11-2131/td.201704250066

不同颜色青海软玉微观形貌和矿物组成特征

基金项目: 

桂林理工大学博士科研启动经费 002401003554

广西自然科学基金项目 2015GXNSFBA139197

广西自然科学基金项目(2015GXNSFBA139197);桂林理工大学博士科研启动经费(002401003554)

详细信息
    作者简介:

    于海燕, 博士, 讲师, 研究方向为宝石矿物学。E-mail:yhy0410@glut.edu.cn

  • 中图分类号: P575.1;P575.2

Micro-morphology and Mineral Composition of Different Color Qinghai Nephrites

  • 摘要: 青海软玉颜色丰富,近年来对青海软玉矿物学的研究不少,但针对不同颜色青海软玉矿物学特征的研究还存在欠缺。本文利用偏光显微镜、扫描电子显微镜、电子探针及粉晶X射线衍射仪器,从透闪石微形貌特征、微观结构、矿物组成及结晶度四个方面,研究了青海软玉颜色与矿物学特征的对应关系。结果表明:白玉、烟青玉、糖玉中透闪石主要为纤维状,显微纤维变晶结构,结晶度为96.12%~96.88%;青白玉和翠青玉中透闪石主要为叶片状,显微叶片变晶结构,结晶度为97.35%,97.32%;青玉和碧玉中透闪石主要为叶片状,显微叶片-隐晶质变晶结构,结晶度为95.48%,95.29%;黄玉中透闪石主要为柱状,显微柱状变晶结构,结晶度为97.84%。青海软玉主要组成矿物均为透闪石,含量在95%以上,部分次要矿物如翠青玉中的榍石、黄玉中的钙长石、青玉中的菱镁矿、碧玉中的铬铁矿、糖玉中的斜黝帘石只出现在特定颜色的青海软玉样品中。研究认为不同颜色青海软玉矿物学特征确实存在差异,这些特征为研究不同颜色青海软玉成矿环境及成矿条件提供了科学依据。
    要点

    (1) 对比了不同颜色青海软玉微观形貌和矿物组成。

    (2) 揭示了不同颜色青海软玉微观结构在结晶度上的差异。

    (3) 发现不同颜色青海软玉矿物学特征的差异与成矿条件及成矿来源有关。

    HIGHLIGHTS

    (1) Micromorphology and mineral compositions of different color Qinghai nephrites were compared.

    (2) Differences in crystallinity of microstructure and for different color Qinghai nephrites were revealed.

    (3) It was found that the differences in mineral features of different color Qinghai nephrites were related to the ore-forming conditions and sources.

  • 铅锌矿石多以硫化矿共生,或与其他金属共生,组成复合多金属硫化矿床。矿物中伴生的钨、钼、锡、锗、硒、碲等有益组分的含量对矿床的综合评价和矿产工业开发及利用具有重要意义[1]

    对于铅锌矿石的分析,在国家标准方法GB/T 14353—2014中,钨和钼采用氢氟酸-硝酸-高氯酸体系进行样品分解,以电感耦合等离子体质谱仪(ICP-MS)测定,当溶液中共存的铜含量>5%或铅含量>10%时,对钨、钼的测定分别产生不同程度的正、负干扰,该方法通过在标准溶液中等量补偿干扰元素的方式扣除测定干扰。各类地质样品中锡的含量常低于10 μg/g,可采用固体粉末发射光谱法测定[2],但铅锌矿的含硫量高,采用电火花激发时易引起样品飞溅跳样;王铁等[3]采用5种混合酸消解锰铁中的痕量锡,但针对铅锌矿中难熔锡石矿物的分解效果难以保证。国家标准方法中,锗和硒分别以氢氟酸-硝酸-硫酸和碳酸钠-氧化锌进行样品分解,均采用原子荧光光谱法测定,此溶液体系中共存的高含量铅(320 mg/L以上)干扰锗的测定,而硒采用半熔法-沸水提取的前处理方法使进入测定体系的主量金属元素大幅度减少,基本消除了干扰。碲元素的丰度低,熔矿后通常需要分离富集,刘正等[4]采用萃取法进行样品预处理,以石墨炉原子吸收光谱法测定碲的含量。国家标准中采用共沉淀分离的方法,当硒含量高于1 μg/g时可能干扰碲的测定。可见现有分析方法中,对铅锌矿有用组分进行综合评价时各元素采用分组或单独溶矿和测定的方式,多元素无法同时分析,操作强度大、效率低,且存在不可避免的主量元素干扰,影响了分析的准确度和精密度。

    采用ICP-MS测定铅锌矿中的6种伴生元素,研究人员通常采用混酸分组处理样品。为了确保难熔元素锡完全分解,王佳翰等[5]同时使用硫酸和高氯酸高温冒烟消解,再以硝酸180℃复溶样品同时测定钨、钼、锡,样品处理时间长;非金属硒、碲含量较低,且易受主量元素干扰,陈波等[6]采用乙醇介质提高硒、碲的分析灵敏度。现有的熔矿和测定方法难以兼顾6种元素的同时、准确测定。本研究采用碱熔体系,熔矿后加入阳离子树脂交换分离钠盐,同时将造岩元素钾、铁、铝等及主量元素铅、锌从测定体系中分离,有效减小基体效应和矿石中铅的干扰,建立了以ICP-MS测定铅锌矿中的钨、钼、锡、锗、硒、碲的方法。

    iCAP Q型电感耦合等离子体质谱仪(美国ThermoFisher公司),主要工作参数如下:测定模式为KED模式;RF功率1150 W;等离子气流量15.0 L/min;辅助气流量1.0 L/min;雾化气流量1.0 L/min;进样泵流速为30 r/min;进样冲洗时间20 s;扫面方式为跳峰;单元素积分时间为1 s。

    过氧化钠、三乙醇胺、柠檬酸为分析纯,三乙醇胺、柠檬酸作为络合剂使用。

    柠檬酸溶液:浓度为0.8%,溶剂为水。

    732型阳离子交换树脂:在交联为7%的苯乙烯-二乙烯共聚体上带磺酸基(—SO3H)的阳离子交换树脂。

    铑(GSB04-1746-2004)、铼(GSB04-1745-2004)、硼(GSB04-1716-2004)、磷(GSB04-1741-2004)单元素标准储备溶液:浓度为1000 μg/mL,碘(GSB05-1137-1999)单元素标准溶液:浓度为100 μg/g。以上单元素标准储备溶液均由国家有色金属及电子材料分析测试中心定值,逐级稀释后配制成实验用内标液,铼、铑浓度为0.5 μg/mL,硼、磷、碘浓度为1.0 μg/mL。

    实验用水为超纯水(电阻率18.0 MΩ·cm)。

    实验样品为铜铅锌矿石标准物质,与实际样品具有相近的基体组成和主量元素含量。包括:GBW07170为西藏自治区地质矿产勘查开发局中心实验室研制的铜、铅矿石成分分析标准物质;GBW07164和GBW07167为中国地质科学院地球物理地球化学勘查研究所研制的富铜(银)矿石和铅精矿成分分析标准物质;BY0110-1为云南锡业公司研制的锌精矿成分分析标准物质,矿物类型为氧化矿;GBW07234和GBW07235为湖北地质实验研究所研制的铜矿石和铅矿石成分分析标准物质。

    称取待测矿样0.4000 g于刚玉坩埚中,用塑料勺加入2.0 g过氧化钠,坩埚置于预热至500℃的耐火板上放置5 min,再转移到升温至500℃的马弗炉中,升温至750℃,保温10 min,取出后冷却至约100℃,坩埚放入100 mL聚四氟乙烯烧杯中,加入80 mL热水(约80℃)提取,加入2 mL三乙醇胺,加入0.5 μg/mL铼内标溶液5.00 mL,搅拌均匀,取出坩埚,冷却后定容于100 mL容量瓶中,得待测液。

    搅拌过程中移取10.0 mL待测液于50 mL聚四氟乙烯坩埚中,加入0.8%柠檬酸溶液8 mL,摇匀,再加入8~9 g阳离子树脂,摇匀后于回旋振荡器上以振速150~160 r/min振荡15 min,充分离子交换,加入8 mL水,继续于振荡器上振荡20 min后,定容于50 mL容量瓶中,得测定液。

    在100 mL容量瓶中加入逐级稀释后的钨、钼、锡、锗、硒、碲标准溶液,加入2.0 g过氧化钠、内标溶液5.00 mL(内标元素浓度Re:0.5 μg/mL;B:1.0 μg/mL)和2 mL三乙醇胺,定容,摇匀,配制成钨、钼、锡、锗、硒、碲的混合标准曲线溶液,随同样品待测液(1.3.2节)制备成工作曲线溶液。各元素浓度见表 1

    表  1  钨钼锡锗硒碲标准工作溶液
    Table  1.  Standard working solution of tungsten, molybdenum, tin, germanium, selenium and tellurium
    混合标准溶液系列 浓度(ng/mL)
    W Mo Sn Ge Se Te
    S0 0.0 0.0 0.0 0.0 0.0 0.0
    S1 4.0 10.0 4.0 2.0 2.0 1.0
    S2 8.0 20.0 8.0 4.0 4.0 2.0
    S3 20.0 50.0 20.0 10.0 10.0 5.0
    S4 40.0 100.0 40.0 20.0 20.0 10.0
    S5 80.0 200.0 80.0 40.0 40.0 20.0
    S6 120.0 400.0 120.0 60.0 60.0 30.0
    S7 200.0 1000.0 200.0 100.0 100.0 50.0
    下载: 导出CSV 
    | 显示表格

    多元素系统分析中,对熔矿方式的选择要优先考察矿物晶格稳定的难熔元素的熔矿完全程度。6种待测元素中钨、钼、锗[7]、硒、碲[8]可采用高氯酸(硫酸)-硝酸-氢氟酸-(盐酸)以敞开酸溶的方式进行样品分解,样品分解效果好,但采用敞开酸溶法进行锡矿石元素分析时存在矿物分解不完全的风险,且方法适用矿种范围窄[9]。高压封闭酸溶的方式使锡消解完全,但需增压和延长样品消解时间[10],造成溶矿效率低且无法大批量处理样品。

    对于含锡石的难溶铅锌矿石,采用过氧化钠熔融可以使样品分解完全。但碱性熔剂引入了大量盐类物质和基体组分,并含有一定量的金属、非金属杂质,造成分析空白偏高。本法通过将熔剂过筛(10目)、混匀、固定熔剂加入量的方式使空白值保持一致。

    经过氧化钠熔融,样品溶液体系中的总固体溶解量(TDS)较高(大于0.5%),并通过进样系统沉积于采样锥、截取锥和离子透镜,影响ICP-MS测试的稳定性[11]。其中高含量的钠盐将吸收等离子体电离能,降低中心通道的温度,对待测元素产生电离抑制。

    在测定液中加入的柠檬酸,通过N或O电负性较强的阴离子作用于钨、钼、锡金属阳离子中心形成稳定的复合物;锗、硒和碲在强碱性溶液中分别以锗酸根(GeO32-)、硒酸根(SeO42-)、碲酸根(H4TeO62-)的形式存在。强酸型阳离子树脂中的H+在溶液中与Na+发生交换,降低了盐类浓度[12],使溶液由强碱性逐渐转化为弱酸性,离子交换后的溶液pH=4~5;同时使造岩元素铁、铝、钙、镁以及基体元素从溶液中分离,减少了基体干扰。三乙醇胺、柠檬酸作为络合剂,有助于铁、铝元素的交换,使溶液澄清。

    选取标准物质GBW07170、GBW07167和BY0110-1,考察主量元素铜、铅、锌、铁的去除情况,表 2中的数据表明,按照本实验方法处理各主量元素的去除率均高于96%,这些主量元素在测定介质中的实际浓度为0.192 ng/mL~1.28 μg/mL,对待测元素的干扰可基本忽略。

    表  2  主量元素去除试验
    Table  2.  Removal tests of the principal components
    标准物质编号 Cu Pb Zn Fe
    认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%) 认定值(%) 实测含量(%) 去除率(%)
    GBW07170 12.59 1.28×10-3 99.99 2.24 8×10-5 99.99 1.21 8×10-5 99.99 - 8×10-3 -
    GBW07167 0.028 9.6×10-4 96.57 57.1 8×10-2 99.86 3.3 1.84×10-3 99.94 12 0.16 98.67
    BY0110-1 0.135 2.4×10-5 99.98 0.35 3.44×10-3 99.02 42.98 8.24×10-4 99.99 - 7.2×10-3 -
    注:“-”表示该元素无定值或其去除率无法计算。
    下载: 导出CSV 
    | 显示表格

    选择铼、铑及离子行为与待测元素相近的硼、磷、碘元素(在碱性溶液中以阴离子形式存在)进行内标试验。这些内标元素与待测元素钨、钼、锡、锗、硒、碲的第一电离电位范围为7.460~10.486 eV与7.099~9.752 eV。按照金属和非金属元素进行分组内标试验,分次考察不同仪器条件和不同时间下钨、钼、锡、锗、硒、碲与内标元素的计数值之比,计算各元素测定值的相对标准偏差(RSD,n≥20),试验结果如表 3

    表  3  内标元素选择试验
    Table  3.  Selection tests of internal standards
    内标元素 对应待测元素 RSD(%) 各类样品中内标元素含量范围
    Re W、Mo、Sn、Ge 0.92~2.20 铅锌矿石:0.24~3.5 μg/g
    土壤样品:0.074~0.53 ng/g
    Rh W、Mo、Sn、Ge 1.03~3.55 贵金属矿石:0.017~22 ng/g
    B Se、Te 1.66~2.43 土壤样品:4.6~155 μg/g
    P Se、Te 3.68~4.94 土壤样品:140~1490 μg/g
    I Se、Te 3.93~5.81 土壤样品:0.3~2.9 μg/g
    注:各元素大致含量范围参考国家一级标准物质定值。
    下载: 导出CSV 
    | 显示表格

    在各类地质样品中,铼、铑、碘元素的含量普遍低于10 μg/g,而磷的自然丰度均高于100 μg/g。铼与钨钼锡锗、硼与硒碲的多次测定的相对标准偏差均低于2.5%,测试相关性优于铑、磷和碘内标元素。同时考虑到碘的氢化物可能对碲产生质谱干扰,本实验最终以铼和硼分别作为金属和非金属元素的内标元素。

    质谱常见干扰包括同量异位素的干扰和多原子离子复合物(氢、氧、氩复合物等)的干扰[13]。在本方法中,同量异位素干扰如74Se对74Ge的干扰、氩气中的杂质82Kr对82Se的测定干扰;而多原子离子复合物的干扰包括182W受1H181Ta的干扰,95Mo受40Ar55Mn的干扰,118Sn可能受到16O102Ru和12C106Pd的干扰,铁氧化物58Fe16O和镍氧化物58Ni16O干扰74Ge的测定,66Zn16O干扰82Se的测定,128Te可能受到1H127I的干扰。

    对同量异位素的干扰在线校正,选择干扰元素的异质同位素进行定量测定,根据干扰元素同位素的丰度比计算干扰系数,采用数学公式校正的方法,仪器自动对干扰进行扣除,干扰校正方程见表 4。多原子离子复合物的干扰较为复杂,且氩复合物的干扰难以避免,在测定时选择动能歧视(KED)模式[14],同时加入强酸型阳离子树脂交换去除溶液中大部分的稀土元素、Fe3+、Ni2+、Mn2+及高含量Cu2+、Pb2+、Zn2+等离子,干扰基本可以消除。

    表  4  同位素、相关系数、质谱干扰扣除及方法检出限
    Table  4.  Isotope, correlation coefficient, mass spectrum interference deduction and detection limits
    元素 同位素 相关系数 干扰校正 方法检出限(μg/g)
    树脂处理前 树脂处理后
    W 182W 0.9981 0.9995 - 0.50
    Mo 95Mo 0.9990 0.9999 - 0.15
    Sn 118Sn 0.9954 0.9994 - 0.29
    Ge 74Ge 0.9992 0.9997 -0.0407×78Se 0.15
    Se 82Se 0.9989 0.9995 -1.0010×83Kr 0.05
    Te 128Te 0.9923 0.9995 - 0.03
    注:“-”表示元素无干扰或存在的干扰极小,可忽略。
    下载: 导出CSV 
    | 显示表格

    制备工作曲线溶液时进行基体匹配,因此溶液介质中存在较高浓度的钠盐。本法通过阳离子树脂处理工作曲线溶液,所得工作曲线的相关性优于不加阳离子树脂处理的方法,与同类酸溶研究相比,硒、碲工作曲线的相关性较优[8]。由于加入大量碱性熔剂进行样品熔融,受试剂空白影响,钨、钼、锡元素的检出限高于混合酸酸溶的前处理方法[5],碲的检出限优于国家标准方法和萃取分离-石墨炉原子吸收光谱法检出限0.20 μg/g和0.055 μg/g[4],曲线相关系数及方法检出限见表 4。考虑实际样品中各元素的含量,本方法满足铅锌矿石中多元素的分析测试要求。

    选取标准物质GBW07234、GBW07164及GBW07235按照1.3节实验方法进行准确度试验,计算相对误差和加标回收率;对样品进行平行分析(n=8),计算相对标准偏差(RSD),分析结果列于表 5。标准物质测定的相对误差范围为-8.33%~7.00%,加标回收率为94.9%~107.5%,多次测定相对标准偏差(RSD)均小于8%,方法准确度满足地质矿产实验室测试质量管理规范(DZ/T 0130—2006)的要求(按照样品中各元素含量计算可允许最小相对偏差为16.98%)。与混合酸酸溶的方法相比,钨、钼和锡的相对标准偏差(RSD)略高于ICP-MS法(钨、钼和锡分别为2.9%~3.6%、2.4%~2.9%和2.7%~3.9%)[5],其中钼和锗的相对标准偏差(RSD)略低于孟时贤等测定铅锌矿采用的电感耦合等离子体发射光谱法1.5%~5.4%和1.4%~5.7%[15]

    表  5  准确度和精密度试验
    Table  5.  Accuracy and precision tests of the method
    标准物质编号 元素 参考值(μg/g) 测定值(μg/g) 相对误差(%) 加标量(μg/g) 测定值(μg/g) 回收率(%) RSD(%)
    GBW07234 W 3.9 3.88 -0.51 5.0 8.69 95.8 4.7
    Mo 2.4 2.32 -3.33 2.0 4.51 105.5 2.2
    Sn 3.8 4.05 6.58 5.0 8.93 102.6 3.5
    Ge 0.93 0.94 1.08 1.0 1.91 98.0 2.7
    Se 0.89 0.86 -3.37 1.0 1.84 95.0 6.1
    Te 0.13 0.12 -7.69 0.2 0.34 105.0 7.6
    GBW07164 W 56 54.5 -2.68 50.0 105.5 99.5 2.2
    Mo 137 137.6 0.44 150.0 282.3 98.3 1.5
    Sn 9.7 9.2 -5.15 10.0 18.7 94.9 4.6
    Ge 3.3 3.1 -6.06 5.0 8.90 107.2 2.6
    Se 24 25.1 4.58 30.0 55.3 102.4 1.8
    Te 1.8 1.65 -8.33 2.0 3.71 95.0 5.7
    GBW07235 W 17.6 18.35 4.26 20.0 38.22 103.1 3.2
    Mo 1.6 1.65 3.12 2.0 3.63 101.5 4.8
    Sn 3.0 3.21 7.00 5.0 7.97 99.4 5.6
    Ge 0.90 0.88 -2.22 1.0 1.91 101.0 3.1
    Se 1.7 1.66 -2.35 2.0 3.85 107.5 5.3
    Te 3.9 4.09 4.87 5.0 8.88 99.6 2.2
    下载: 导出CSV 
    | 显示表格

    采用铅锌矿石国家标准方法和传统分析方法,无法同时测定钨、钼、锡、锗、硒、碲,其中低含量元素需要分离富集,分析效率低、流程长且存在不可避免的主量元素干扰。本方法采用过氧化钠碱熔体系,在样品前处理环节通过阳离子树脂交换分离高含量钠盐和可能产生干扰的高含量铅,实现了在一个溶液体系中快速、准确、同时测定多种元素。本研究在降低方法检出限等方面可加强探索以扩大方法适用范围。本方法应用树脂分离富集技术去除干扰,优化了测定介质,为低含量难熔元素的准确测定提供了思路,同时可考虑应用于地质样品中硼、碘等元素的分析测试。

    致谢: 本工作得到了本人博士生导师南京大学王汝成教授的帮助,桂林理工大学张良钜教授给予的指导和建议,在此一并表示衷心的感谢!
  • 图  1   8种颜色青海软玉样品照片

    Figure  1.   Photos of Qinghai nephrite samples

    图  2   不同颜色青海软玉微形貌特征

    Figure  2.   Micromorphology characteristics of Qinghai nephrites with different colors

    图  3   不同颜色青海软玉微观结构特征

    Figure  3.   Microstructural feature of Qinghai nephrites with different colors

    图  4   不同颜色青海软玉电子探针背散射照片

    Figure  4.   Electron probe back scattering photos of Qinghai nephrites with different colors

    图  5   不同颜色青海软玉XRD谱图

    Figure  5.   XRD spectra of different colors Qinghai nephrite

    表  1   不同颜色青海软玉矿物电子探针数据

    Table  1   Electron probe data of minerals in different colors Qinghai nephrite by EPMA

    样品 矿物组成 SiO2
    (%)
    MgO
    (%)
    CaO
    (%)
    Al2O3
    (%)
    FeO
    (%)
    MnO
    (%)
    TiO2
    (%)
    K2O
    (%)
    Na2O
    (%)
    Cr2O3
    (%)
    含量
    (%)
    矿物
    白玉 主要矿物 59.19 23.93 13.99 0.61 0.30 0.05 0.01 0.01 0.06 0.00 98.15 透闪石
    次要矿物 0.02 0.17 55.93 0.00 0.03 0.12 0.04 0.00 0.01 0.01 56.33 方解石
    0.07 0.08 0.00 0.02 92.08 0.02 0.04 0.00 0.03 0.05 92.39 磁铁矿
    烟青玉 主要矿物 58.22 23.74 13.67 0.89 0.41 0.09 0.01 0.04 0.02 0.02 97.11 透闪石
    次要矿物 0.00 0.09 55.54 0.01 0.00 0.03 0.03 0.01 0.02 0.00 55.73 方解石
    糖玉 主要矿物 59.40 23.90 13.85 0.08 0.15 0.01 0.02 0.02 0.04 0.00 97.47 透闪石
    次要矿物 0.00 0.08 55.20 0.00 0.04 0.08 0.02 0.00 0.01 0.00 55.43 方解石
    38.53 0.45 23.68 28.26 5.75 0.01 0.08 0.01 0.06 0.00 96.82 斜黝帘石-1
    39.20 0.47 24.74 32.50 0.28 0.01 0.00 0.02 0.00 0.00 97.21 斜黝帘石-2
    青白玉 主要矿物 59.54 24.37 13.50 0.13 0.09 0.00 0.01 0.03 0.06 0.02 97.75 透闪石
    次要矿物 54.34 17.54 24.17 2.53 0.43 0.03 0.09 0.00 0.32 0.00 99.46 透辉石
    黄玉 主要矿物 58.17 23.92 14.05 1.78 0.40 0.03 0.00 0.07 0.17 0.00 98.59 透闪石
    54.94 16.26 24.56 2.74 0.69 0.03 0.00 0.03 0.50 0.02 99.77 透辉石
    次要矿物 40.08 0.06 24.04 34.33 0.73 0.00 0.07 0.00 0.00 0.00 99.31 钙长石-1
    43.79 0.03 19.58 35.42 0.28 0.01 0.00 0.02 0.03 0.01 99.17 钙长石-2
    翠青玉 主要矿物 58.64 23.79 13.80 0.26 0.73 0.02 0.02 0.03 0.05 0.02 97.36 透闪石
    54.67 15.19 25.63 0.96 2.91 0.08 0.27 0.00 0.14 0.01 99.85 透辉石-1
    次要矿物 54.09 17.94 25.27 0.01 1.93 0.05 0.01 0.00 0.07 0.32 99.68 透辉石-2
    30.75 0.08 27.32 2.36 1.31 0.04 37.24 0.01 0.01 0.03 99.15 榍石
    青玉 主要矿物 55.91 20.45 13.30 0.96 5.45 0.05 0.04 0.04 0.04 0.03 96..27 透闪石
    0.05 39.96 0.09 0.04 5.80 0.44 0.02 0.01 0.02 0.00 46.43 菱镁矿
    次要矿物 0.46 0.35 0.00 0.00 92.43 0.03 0.00 0.00 0.04 0.32 93.63 磁铁矿
    45.17 36.71 0.09 0.14 6.88 0.02 0.00 0.00 0.03 0.03 89.07 蛇纹石
    碧玉 主要矿物 55.37 21.72 13.49 1.33 3.22 0.03 0.01 0.03 0.03 0.09 95..32 透闪石
    42.35 35.08 0.05 4.56 5.38 0.01 0.07 0.00 0.02 0.03 87.55 蛇纹石
    53.88 13.90 20.98 3.60 4.64 0.12 0.01 0.00 0.44 0.11 97.68 透辉石
    次要矿物 33.44 23.14 0.56 19.89 8.76 0.45 0.10 0.14 0.28 0.01 86.77 绿泥石
    0.05 1.00 0.00 3.12 33.85 0.83 0.06 0.00 0.04 59.83 98.78 铬铁矿
    下载: 导出CSV

    表  2   不同颜色青海软玉晶面间距、晶胞参数和结晶度

    Table  2   Interplanar distance, unite cell parameters and crystallinity of Qinghai nephrites with different colors by XRD

    样品 d(110) d(131) d(240) d(310) d(151) d(351) a0 b0 c0 β C(%)
    白玉 8.423 3.381 3.276 3.125 2.707 2.017 9.879 18.049 5.289 104.97 96.65
    糖玉 8.435 3.383 3.278 3.127 2.707 2.017 9.902 18.068 5.387 104.86 96.12
    烟青玉 8.436 3.386 3.278 3.127 2.709 2.017 9.808 18.047 5.337 103.83 96.88
    青白玉 8.435 3.383 3.276 3.127 2.706 2.017 9.861 18.057 5.287 104.69 97.35
    翠青玉 8.451 3.386 3.281 3.130 2.709 2.018 9.809 18.072 5.466 104.51 97.32
    黄玉 8.434 3.388 3.276 3.125 2.707 2.017 9.917 18.064 5.366 104.98 97.84
    碧玉 8.450 3.386 3.281 3.129 2.709 2.108 9.499 18.506 5.569 104.43 95.29
    青玉 8.449 3.388 3.281 3.129 2.709 2.019 9.654 18.495 5.428 104.76 95.48
    数据平均值 8.436 3.471 3.277 3.128 2.772 2.028 9.814 18.096 5.397 104.60 96.81
    透闪石 8.377 3.373 3.268 3.119 2.700 2.013 9.818 18.047 5.275 104.79 -
    下载: 导出CSV
  • 冯晓燕, 张蓓莉.青海软玉的成分及结构特征[J].宝石和宝石学杂志, 2004, 6(4):7-9. doi: 10.3969/j.issn.1008-214X.2004.04.002

    Feng X Y, Zhang B L.Study on compositions and texture characteristics of nephrite from Qinghai Province[J]. Journal of Gems and Gemmology, 2004, 6(4):7-9. doi: 10.3969/j.issn.1008-214X.2004.04.002

    李冉, 廖宗廷, 李玉加, 等.青海软玉中硅灰石的确定及其意义[J].宝石和宝石学杂志, 2004, 6(1):17-19. doi: 10.3969/j.issn.1008-214X.2004.01.005

    Li R, Liao Z T, Li Y J, et al. Wollastonite in Qinghai nephrite jade and its significance[J]. Journal of Gems and Gemmology, 2004, 6(1):17-19. doi: 10.3969/j.issn.1008-214X.2004.01.005

    汤红云, 钱伟吉, 陆晓颖, 等.青海软玉产出的地质特征及物质成分特征[J].宝石和宝石学杂志, 2012, 14(1):24-31. doi: 10.3969/j.issn.1008-214X.2012.01.006

    Tang H Y, Qian W J, Lu X Y, et al.Geological and composition feature of nephrite from Qinghai Province[J]. Journal of Gems and Gemmology, 2012, 14(1):24-31. doi: 10.3969/j.issn.1008-214X.2012.01.006

    周征宇, 廖宗廷, 陈盈, 等.青海软玉的岩石矿物学特征[J].岩矿测试, 2008, 27(1):17-20. doi: 10.3969/j.issn.0254-5357.2008.01.005

    Zhou Z Y, Liao Z T, Chen Y, et al.Petrological and mineralogical characteristics of Qinghai nephrite[J]. Rock and Mineral Analysis, 2008, 27(1):17-20. doi: 10.3969/j.issn.0254-5357.2008.01.005

    李云峰, 高敏, 王悠然.青海软玉的宝玉石学特征及成因分析[J].现代矿业, 2014, 28(3):54-58. doi: 10.3969/j.issn.1674-6082.2014.03.016

    Li Y F, Gao M, Wang Y R.The characteristics and genetic analysis of nephrite in Qinghai Province[J]. Modern Mining, 2014, 28(3):54-58. doi: 10.3969/j.issn.1674-6082.2014.03.016

    Yu H Y, Wang R C, Guo J C, et al.Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China[J]. Science in China(Earth Sciences), 2016, 59(8):1597-1609. doi: 10.1007/s11430-015-0231-8

    周征宇, 廖宗廷, 袁媛, 等.青海软玉中"水线"的特征及其成因探讨[J].宝石和宝石学杂志, 2005, 7(3):10-12. doi: 10.3969/j.issn.1008-214X.2005.03.003

    Zhou Z Y, Liao Z T, Yuan Y, et al.Study on characteristics and genesis of 'water line' in Qinghai nephrite jade[J]. Journal of Gems and Gemmology, 2005, 7(3):10-12. doi: 10.3969/j.issn.1008-214X.2005.03.003

    袁媛, 廖宗廷, 周征宇.青海软玉水线的物相分析和微观形貌研究[J].上海地质, 2005(4):68-70. doi: 10.3969/j.issn.2095-1329.2005.04.019

    Yuan Y, Liao Z T, Zhou Z Y.Study on compositions and micro-textures of water-line in nephrite from Qinghai Province[J]. Shanghai Geology, 2005(4):68-70. doi: 10.3969/j.issn.2095-1329.2005.04.019

    刘虹靓, 杨明星, 杨天翔, 等.青海翠青玉的宝石学特征及颜色研究[J].宝石和宝石学杂志, 2013, 15(1):7-14. doi: 10.3969/j.issn.1008-214X.2013.01.002

    Liu H L, Yang M X, Yang T X, et al.Study on colour and gemmological characteristics of viridis nephrite from Qinghai Province[J]. Journal of Gems and Gemmology, 2013, 15(1):7-14. doi: 10.3969/j.issn.1008-214X.2013.01.002

    Yu H Y, Wang R C, Guo J C, et al.Color-inducing elements and mechanisms in nephrites from Golmud, Qinghai, NW China:Insights from spectroscopic and compositional analyses[J]. Journal of Mineralogical & Petrological Sciences, 2016, 59:1597-1609. http://adsabs.harvard.edu/abs/2016JMPeS.111..313Y

    Chen J B, Zeng Z G.Metasomatism of the peridotites from Southern Mariana fore-arc:Trace element characteristics of clinopyroxene and amphibole[J]. Science in China(Earth Sciences), 2007, 50(7):1005-1012. doi: 10.1007/s11430-007-0023-y

    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(3):440-451. doi: 10.1016/j.jseaes.2011.05.012

    王汝成, 谢磊, 陈骏, 等.南岭中段花岗岩中榍石对锡成矿能力的指示意义[J].高校地质学报, 2011, 17(3):368-380. doi: 10.3969/j.issn.1006-7493.2011.03.002

    Wang R C, Xie L, Chen J, et al.Titanite as an indicator mineral of tin mineralizing potential of granites in the Middle Nanling Range[J]. Geological Journal of China Universities, 2011, 17(3):368-380. doi: 10.3969/j.issn.1006-7493.2011.03.002

    赵文俞, 牟善斌, 秦麟卿, 等.木兰山蓝片岩中斜黝帘石-低铁绿帘石连生体的确定[J].岩矿测试, 2002, 21(1):29-32. doi: 10.3969/j.issn.0254-5357.2002.01.006

    Zhao W Y, Mou S B, Qin L Q, et al.Determination of fine intergrowth of low-Fe epidote and clinoepidote in the glaucophane schist from Mulan mountain by electron probe microanalysis and optical microscopy[J]. Rock and Mineral Analysis, 2002, 21(1):29-32. doi: 10.3969/j.issn.0254-5357.2002.01.006

    Bocchio R, Diella V, Adamo I, et al.Mineralogical characterization of the gem-variety pink clinozoisite from Val Malenco, Central Alps, Italy[J]. Rendiconti Lincei, 2017, 28:1-9.

    王永亚, 干福熹.广西陆川蛇纹石玉的岩相结构及成矿机理[J].岩矿测试, 2012, 31(5):788-793. doi: 10.3969/j.issn.0254-5357.2012.05.006

    Wang Y Y, Gan F X.Mineral structure and mineralization mechanism of serpentine jade from Luchuan, Guangxi Province[J]. Rock and Mineral Analysis, 2012, 31(5):788-793. doi: 10.3969/j.issn.0254-5357.2012.05.006

    吕书君, 杨富全, 柴凤梅, 等.新疆准噶尔北缘托斯巴斯套铁铜金矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J].岩矿测试, 2013, 32(3):510-521. doi: 10.3969/j.issn.0254-5357.2013.03.027

    Lü S J, Yang F Q, Chai F M, et al.Mineralogical characteristics of skarn in Tuosibasitao iron-copper-gold deposits of the northern margin of Junggar, Xinjiang, and their geological significance[J]. Rock and Mineral Analysis, 2013, 32(3):510-521. doi: 10.3969/j.issn.0254-5357.2013.03.027

    Lacroix B, Charpentier D, Buatier M, et al.Formation of chlorite during thrust fault reactivation.Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (Southern Pyrenees)[J]. Contributions to Mineralogy & Petrology, 2012, 163(6):1083-1102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db1a5d67097f4ea047ad3fdf805a3541

    李立兴, 朱明玉, 方同明, 等.应用电子探针技术研究北京密云放马峪铬铁矿床成因-来自含铬尖晶石矿物化学的证据[J].岩矿测试, 2015, 34(5):600-608. doi: 10.15898/j.cnki.11-2131/td.2015.05.017

    Li L X, Zhu M Y, Fang T M, et al.Origin of the Fangmayu chromite deposit, Miyun, Beijing:Constraints from electron microprobe analyses of Cr-spinel[J]. Rock and Mineral Analysis, 2015, 34(5):600-608. doi: 10.15898/j.cnki.11-2131/td.2015.05.017

    包鲁明, 谭劲, 池召坤, 等.透辉石-钙长石体系熔体在不同过冷条件下晶体生长研究[J].矿物岩石, 2009, 29(3):17-22. doi: 10.3969/j.issn.1001-6872.2009.03.004

    Bao L M, Tan J, Chi Z K, et al.Crystal growth of diopside-anorthite melting system under different undercooking condition[J]. Acta Petrological and Mineralogical, 2009, 29(3):17-22. doi: 10.3969/j.issn.1001-6872.2009.03.004

    Gottschalk M, Andrut M, Melzer S.The determination of the cummingtonite content of synthetic tremolite[J]. European Journal of Mineralogy, 1999, 11(11):967-982. http://www.tandfonline.com/servlet/linkout?suffix=CIT0023&dbid=16&doi=10.1080%2F09603123.2018.1453051&key=10.1127%2Fejm%2F11%2F6%2F0967

    Paolo B, Giovanni B A, Girolamo B.Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health[J]. American Mineralogist, 2008, 93(8-9):1349-1355. doi: 10.2138/am.2008.2869

    梁祥济.中国矽卡岩和矽卡岩矿床形成机理的实验研究[M].北京:学苑出版社, 2000:152-186.

    Liang X J.Experimntal Studies on the Mechanism of the Formation of Skarns and Skarn Ore Deposits in China[M]. Beijing:Academy Press, 2000:152-186.

    何明跃, 王濮.石英的结晶度指数及其标型意义[J].矿物岩石, 1994, 14(3):22-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400670508

    He M Y, Wang P.The crystallinity of quartz and its typomorphic significance[J]. Minerals and Rocks, 1994, 14(3):22-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400670508

  • 期刊类型引用(15)

    1. 苏立城,陈晓珊,罗志忠,胡英,陈煜佳,吴道铭,曾曙才. 氮添加对森林土壤有机碳库固存及CO_2排放的影响研究进展. 生态学报. 2024(07): 2717-2733 . 百度学术
    2. 易志远,罗霄,王玉霞,苏丽,乔成龙,薛斌,杜灵通. 贺兰山东麓典型葡萄园土壤有机碳库组成及其活跃度. 水土保持通报. 2024(03): 390-398 . 百度学术
    3. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
    4. 高放,洪煜,孙燕,宓文海,陈硕桐. 秸秆还田对盐碱地土壤有机碳库及其组分影响的研究进展. 华北农学报. 2024(S1): 143-149 . 百度学术
    5. 卢伟伟,胡嘉欣,陈思桦,陈玮铃,冯思宇. 苏北滨海土壤无机碳含量的测定方法比较. 南京林业大学学报(自然科学版). 2023(01): 76-82 . 百度学术
    6. 吴紫琪,何语堂,羊妍珂,陶玉林,吴骏男,蒋振楠,严小军,廖智,刘雪珠,何建瑜. 厚壳贻贝(Mytilus coruscus)养殖区沉积物微生物多样性及固碳潜力研究. 海洋与湖沼. 2023(02): 502-513 . 百度学术
    7. 陈宗定,许春雪,刘贵磊,王岚,孙慧中,安子怡. 元素分析仪和燃烧—红外吸收光谱法测定土壤和沉积物中总碳含量的比对. 理化检验-化学分册. 2023(07): 771-775 . 百度学术
    8. 袁冬梅,严令斌,武亚楠,张丽敏,杨熳,喻理飞. 喀斯特高原区植被恢复过程土壤有机碳的变化. 山地农业生物学报. 2022(02): 20-25 . 百度学术
    9. 张延,高燕,张旸,Gregorich Edward,李秀军,陈学文,张士秀,梁爱珍. Rock-Eval热分解法及其在土壤有机碳研究中的应用. 土壤与作物. 2022(03): 282-289 . 百度学术
    10. 严洁,于小娟,唐明,段文艳,李鑫,郝一鸣,盛敏. 造林对乌海露天煤矿复垦地土壤养分和碳库的影响. 林业科学研究. 2021(04): 66-73 . 百度学术
    11. 王尧,田衎,封跃鹏,王伟. 土壤中总有机碳环境标准样品研制. 岩矿测试. 2021(04): 593-602 . 本站查看
    12. 岑言霸,苏斌,冯泽波,史正涛. 滇池入湖河流pH时空分异特征及其变化机理. 科学技术与工程. 2021(26): 11432-11442 . 百度学术
    13. 安帅,陈鉴惠,赵任远,宋丽华. 东北黑土地中碳赋存形态分析方法研究. 地质与资源. 2021(06): 716-721+709 . 百度学术
    14. 殷陶刚,窦向丽,张旺强,和振云. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量. 岩矿测试. 2020(04): 631-638 . 本站查看
    15. 曹彬彬,朱熠辉,姜禹含,师江澜,田霄鸿. 添加石灰和秸秆对土有机碳固持的影响. 中国农业科学. 2020(20): 4215-4225 . 百度学术

    其他类型引用(13)

图(5)  /  表(2)
计量
  • 文章访问数:  10700
  • HTML全文浏览量:  4377
  • PDF下载量:  58
  • 被引次数: 28
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2018-06-08
  • 录用日期:  2018-08-09
  • 发布日期:  2018-10-31

目录

/

返回文章
返回