• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉

Determination of Cd in Environmental Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Membrane Desolvation

  • 摘要: 应用电感耦合等离子体质谱法(ICP-MS)分析环境地质样品中的Cd时,Zr、Mo元素的氧化物和氢氧化物会对Cd造成严重干扰,导致结果有明显的偏差。针对此问题,本文建立了膜去溶-ICP-MS直接测定环境地质样品中微量Cd的分析方法,该方法可有效地消除Zr、Mo氧化物和氢氧化物对Cd的干扰,保证结果准确、可靠。膜去溶-ICP-MS相比于常规ICP-MS测定Cd的方法,可将Zr、Mo氧化物和氢氧化物对Cd的干扰降低到0.001%,检测灵敏度提高3.5倍左右。在给定条件下,Cd的检出限为0.28 ng/L,测定下限为2.2 ng/L,精密度(RSD,n=12)为2.2%。利用该方法分析20种岩石、土壤和沉积物国家标准物质的测定值与标准值相符,表明膜去溶-ICP-MS法直接测定环境地质样品中痕量或超痕量Cd时具有一定的应用潜力。同时,用该方法对2016年中核集团组织的实验室间两个比对样品中的Cd进行测定,稳健Z比分数分别为0.500和-0.964,Z的绝对值都小于2。

     

    Abstract: Cadmium suffers from significant Zr and Mo based oxide/hydroxide interferences during Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis of environmental samples, which can result in a significant deviation of the results. Direct determination method of Cd in environmental geological samples by ICP-MS with membrane desolvation has been developed in this study. This method can effectively eliminate the interference of Zr, Mo oxides and hydroxides, and ensure the results are accurate and reliable. Compared with the conventional method of ICP-MS, the interference of Zr and Mo oxides and hydroxides can be reduced to 0.001% when membrane desolvation is used. Meanwhile, the sensitivity of Cd can be increased 3.5 times. Under the given conditions, the detection limit of Cd was 0.28 ng/L, the lower limit of determination was 2.2 ng/L, and the precision (RSD, n=12) was 2.2%. The method was applied to analyze 20 Chinese environmental geological reference materials. The analytical results are consistent with the certificated values. It indicates that the proposed method has a great potential for the direct determination of trace or ultra-trace levels of cadmium in environmental geological samples. At the same time, the method was used to determine Cd in two comparison samples between two laboratories in 2016. This comparison was organized by the China National Nuclear Corporation. The Z-scores were 0.500 and -0.964, respectively for the two laboratories, and the absolute values of Z were less than 2.

     

/

返回文章
返回