Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil
-
摘要: 随着经济的发展,矿产资源的开采和利用程度越来越高,一方面发现有地表露头矿床的几率越来越小,另一方面其造成的重金属污染严重危害环境和人类健康。自然界中的微生物与扩散到环境中的重金属会产生相互作用,具有这种特异性的细菌既可应用于指示隐伏金属矿床,亦可应用于重金属污染生物修复。本文从特异性微生物与重金属相互作用微观机制、微生物找矿、重金属污染土壤的微生物修复三个方面,对其研究现状和进展进行了评述,重点对特异性微生物与重金属离子发生的吸附、累积与转化过程,微生物改变重金属元素分布、赋存状态和毒性作用机理,蜡样芽孢杆菌(Bacillus cereus)与金的作用机制及其在寻找隐伏金矿的应用潜力,特异性微生物通过代谢产物吸附去除土壤中重金属元素及其辅助植物修复重金属污染等方面进行了介绍和阐述。Abstract: Economic development requires exploration and exploitation of mineral resources. It is difficult to find surface outcrop deposits, which will cause soil pollution by heavy metals that is a severe hazard to the environment and human health. Microorganisms in nature interact with heavy metals in air. Microorganisms with this specificity can be applied to metal prospect exploration and environmental bioremediation of heavy metal pollution. Interaction mechanisms between specific microorganisms and heavy metals and its application to exploration and environmental bioremediation of heavy metal pollution have been reviewed. The focus of this paper is on the adsorption, accumulation and transformation process between specific microorganisms and heavy metal ions, as well as the mechanism of microbial organisms changing heavy metal distribution, occurrence and toxicity. The interaction mechanism between Bacillus cereus and gold and its application potential to find concealed gold deposits were reviewed. Removal of heavy metals in the soil by the specific microorganism through the adsorption of metabolites and assisting plants to repair heavy metal pollution were introduced and elaborated upon.
-
Keywords:
- soil /
- heavy metal /
- specific microorganism /
- microbial prospecting /
- bioremediation
-
铀是现代核燃料循环体系的基础物质,使得铀矿成为十分重要的战略矿产资源。近些年来中国大力发展核电,对铀资源的需求以平均每年10.3%的速度增长[1]。目前,中国的铀矿地质工作重点已从硬岩铀矿转移到可地浸砂岩型铀矿的评价勘查,这对分析测试工作提出了新的要求[2]。铀、钍是砂岩型铀矿中的核心元素,其含量是地质找矿的主要指标[3]。建立一种能够高效、准确地测定砂岩型铀矿中铀钍的分析方法,对于矿床综合评价、矿物有效利用和地质学研究等相关领域具有重要意义。
随着测试技术的发展,仪器法被更多地应用于铀钍的测定中。现已有国家标准分析方法《硅酸盐岩石化学分析方法第30部分:44个元素量测定》(GB/T 14506.30—2010),以电感耦合等离子体质谱法(ICP-MS)测定硅酸盐中的这两种元素[4]。除此之外,X射线荧光光谱法(XRF)、激光荧光法、湿法化学法、电感耦合等离子体发射光谱法(ICP-OES)等方法也被广泛应用于铀钍分析测试中[5-8]。受矿物效应的影响,XRF法测定铀矿石中的微量元素效果不佳;激光荧光法主要适用于环境样品中微量铀的分析,且样品前处理较为繁琐。ICP-OES法的检出限低、基体干扰小,测定溶液中铀的检出下限为20ng/mL,在铀、钍分析上更具优势,因此也被广泛应用于相关行业的技术领域[9-14]。
砂岩型铀矿样品中含铁量较高[15]。铀矿石常用的前处理方式有敞口酸溶法[16-17]、碱溶法[18]和微波消解法。敞口酸溶法操作简便,但易造成污染,且样品分解往往不完全,导致测定的铀、钍含量偏低。碱熔法分解样品迅速且完全,可以去除大部分共存元素,缺点是会引入大量基体,前处理过程冗长,且过滤分离会去除大部分铀,无法完成对铀、钍元素的同时测定。本文在前人工作基础上,采用微波消解技术[19]对样品进行处理,在盐酸提取液中加入EDTA和三乙醇胺混合溶液作为铁掩蔽剂,消除了共存元素Fe对铀的测定干扰,采用离峰扣背景法来校准背景干扰,建立了一种ICP-OES同时测定砂岩型铀矿中铀、钍元素的高效准确、操作简便的分析方法。
1. 实验部分
1.1 仪器及工作条件
Optima 8300全谱直读电感耦合等离子体发射光谱仪(美国PerkinElmer公司),SCD检测器,宝石喷嘴十字交叉雾化器(耐高盐),Winlab32操作软件。
仪器工作条件:射频发生器功率1.3kW,冷却气(Ar)流速12L/min,雾化气(Ar)流速0.7L/min,辅助气(Ar)流速0.2L/min,进样速度1.0mL/min,进样时间30s。
高纯氩气:质量分数大于99.999%。
Mars 6高通量密闭微波消解仪器(美国CEM公司)。
1.2 标准溶液和主要试剂
铀、钍单元素标准储备溶液:浓度均为1000μg/mL,购自中国计量科学研究院。
氢氟酸、盐酸、硝酸:微电子级,购自北京兴青红精细化学品科技有限公司。
高氯酸:优级纯,购自天津市鑫源化工有限公司。
乙二胺四乙酸二钠:分析纯,购自天津市风船化学试剂科技有限公司。
三乙醇胺:分析纯,购自天津市科密欧化学试剂有限公司。
铁掩蔽剂的配制:称取50.0 g乙二胺四乙酸二钠(EDTA)于2000 mL烧杯中,加入500 mL三乙醇胺、1500 mL蒸馏水,搅拌均匀使之溶解完全。
去离子水:电阻率≥18MΩ·cm。
1.3 样品处理方法
以铀含量较高的铀矿石成分分析国家一级标准物质GBW04101(铀标准值为3.29%)、钍含量较高的铀矿石成分分析国家一级标准物质GBW04106(钍标准值为0.156%),以及鄂尔多斯盆地北部杭锦旗砂岩型铀矿实际样品(经碎样工序制备成粒度为≤74μm)为实验对象。
称取0.1000g样品于微波消解罐中,用少量去离子水湿润后,缓慢加入3mL盐酸、1mL硝酸、4mL氢氟酸,稍后旋紧消解罐,置于微波消解仪中,按照表 1所列的升温程序进行消解。
表 1 微波消解升温程序Table 1. Program of microwave digestion步骤 升温时间(min) 功率(W) 温度(℃) 保持时间(min) 1 5 1200 100 0 2 5 1200 130 5 3 5 1200 180 20 待程序执行完毕,冷却开盖,用去离子水将消解液转移至聚四氟乙烯烧杯中,加入1mL高氯酸后,置于150℃的电热板上加热,待白烟冒尽后,沿杯壁加入5mL盐酸、5mL去离子水,温热溶解残渣,取下冷却后,将溶液移入250mL容量瓶中,加入10mL铁掩蔽剂,用10% 盐酸溶液定容,摇匀,待测。
1.4 标准溶液系列的配制
使用铀、钍单元素标准储备溶液逐级稀释配制成铀、钍(0、5、10、20、50、100μg/mL)混合标准溶液系列,各标准溶液中分别加入20mL的50%盐酸溶液匹配基体。采用ICP-OES对空白及标准溶液进行测定。以铀、钍元素质量浓度为横坐标,信号强度值为纵坐标,绘制标准曲线。铀元素标准曲线相关系数为0.9996,钍元素标准曲线相关系数为0.9999,满足分析要求。
2. 结果与讨论
2.1 样品处理方式的选择
三乙醇胺为碱性,容易与溶液中的铁离子发生水解产生沉淀,从而失去掩蔽作用,故样品处理采用酸溶法,使三乙醇胺掩蔽效果更好。为探究三种方法对砂岩型铀矿样品的处理效果,选取铀钍含量较高的铀矿石成分分析国家一级标准物质GBW04106(U含量推荐值为0.0504%±0.0013%,Th含量推荐值为0.156%±0.003%)分别采取氢氟酸、硝酸、盐酸、高氯酸混合酸的敞口酸溶、高压密闭消解、微波消解三种方式进行样品处理,经ICP-OES测定后结果见表 2。
表 2 国家标准物质GBW04106采用不同样品分解方式测定结果Table 2. Analytical results of elements in GBW04106 dissoluted with different digestion methods溶样方式 用酸量(mL) 溶样时间(h) 溶样温度(℃) 铀测定值(%) 钍测定值(%) 敞口酸溶高压密闭消解 252.5 427 160190 0.04760.0502 0.1370.157 微波消解 8 1.5 180 0.0495 0.151 由表 2可知,敞口酸溶法所得铀、钍测定结果偏低,这说明样品经敞口酸溶后,分解仍不完全,且在开放环境中易造成元素发生损失[20]。采用高压密闭消解的测定结果最准确,曾江萍等[21]采用高压密闭消解法测定锑矿石中的10种元素,使样品分解完全,但这种方法溶样时间较长,不适合大批量样品分析。微波消解法测定结果较好,说明该方法可使铀矿分解完全。孙秉怡等[22]和郭国龙等[23]分别以微波消解作为前处理方式对土壤和粉煤灰中的铀进行分析,取得了较好的效果。微波消解法用酸量少,溶样时间短。仅针对铀钍的测量,其技术条件完全满足测试要求,因此本文采取微波消解对样品进行处理。
2.2 分析谱线的选择
分析谱线的选择直接影响到测试结果的准确性,因此,分析谱线的选择要综合考虑元素的检出限、共存元素的干扰、背景干扰等因素[24]。铀在ICP-OES上常用的分析谱线有367.007nm、385.958nm、393.203nm、409.014nm。钍在ICP-OES上常用的分析谱线有283.730nm、339.204nm、401.913nm。本实验对标准物质GBW04106按1.3节步骤处理后在不同谱线下进行测量,测量结果见表 3。
表 3 国家标准物质GBW04106在不同谱线下的测定结果Table 3. Analytical results of elements in GBW04106 by different spectral lines标准值(%) 不同谱线下GBW04106中铀的测定值(%) 标准值(%) 不同谱线下GBW04106中钍的测定值(%) 367.007nm 385.958nm 393.203nm 409.014nm 283.730nm 339.204nm 401.913n 0.0504 0.0257 0.0611 0.124 0.0498 0.156 0.097 0.182 0.153 根据灵敏度高、背景低、少干扰选择谱线,通过试验比较,确定铀的分析谱线为409.014 nm,钍的分析谱线为401.913 nm。本实验中铀分析谱线的选择与Li等[25]基于实验确定的对铀干扰最低的分析谱线是一致的;钍分析谱线的选择与Sengupta等[26]通过实验研究确定的受干扰最小的钍的分析谱线是一致的;罗艳等[27]在用Optima 8000型ICP-OES对铀、钍测定时进行的多重谱线拟合扣除光谱干扰的研究中也选用了同样的铀、钍谱线。说明本实验对ICP-OES测定铀、钍中谱线干扰的研究与同行业者有着一致性。
2.3 铁元素干扰消除
钍元素在401.913nm处分析情况如图 1a所示,无显著干扰,可采用Optima 8300系统软件的干扰校正系数自动校正分析结果,基本上消除了共存元素的谱线干扰,采用离峰左右两点法进行背景校正,可消除测量中的背景干扰。
铀元素在409.014nm处分析情况如图 1b所示。在测定铀时,铁元素对铀有正干扰。刘欣等[28]讨论了ICP-OES测定岩矿中铀的分析干扰,证明铁浓度在100mg/L时,其干扰使铀浓度响应为0.018mg/L。砂岩型铀矿中的铁含量较高,在此波长下对铀的干扰较为明显。
EDTA和三乙醇胺可与溶液中的铁离子形成络合物,从而起到掩蔽效果。为了最大程度地消除铁对铀的测定干扰,本实验分别采用在5μg/mL和10μg/mL的铀标准溶液中加入100mg/L和200mg/L的铁盐,加入掩蔽剂,然后采用ICP-OES在367.007nm、385.958nm、393.203nm、409.014nm处对铀进行测定,以观测掩蔽效果。加入掩蔽剂的测定结果见表 4。
表 4 有铁干扰时加入不同掩蔽剂铀的测定结果Table 4. Analytical results of uranium with different masking agents in the presence of iron interference分析谱线(nm) 5μg/mL铀标准溶液中铀测量值(μg/g) 10μg/mL铀标准溶液中铀测量值(μg/g) 步骤1 步骤2 步骤3 步骤1 步骤2 步骤3 铀标准溶液(5μg/mL) 加Fe3+量(100mg/L) 加掩蔽剂(10mL) 铀标准溶液(10μg/mL) 加Fe3+量(200mg/L) 加掩蔽剂(10mL) 367.007 4.897 6.102 5.237 9.883 11.21 10.25 385.958 5.023 5.933 5.253 10.13 10.88 10.27 393.203 5.012 5.935 5.398 10.25 10.91 10.31 409.014 5.003 5.698 4.987 10.05 10.73 10.03 由实验结果可知,铁浓度在100mg/L和200mg/L时,铀在4条分析谱线下的测定均受干扰,加入EDTA+三乙醇胺溶液后,铀的测定结果均得到最佳改善,在409.014nm处测定结果最优。因此最终选用EDTA+三乙醇胺混合溶液作为铁掩蔽剂。
在对以往文献的研究中发现,针对钍的测定加入掩蔽剂的较多,如王攀峰等[29]采用碱熔法ICP-OES测量土壤中的钍时,使用三乙醇胺-EDTA混合液进行提取以消除干扰。但本文实验中,钍在加入铁盐后的测定结果并未出现较大波动,谱线干扰也不明显,因此本节干扰试验不对钍进行讨论。
2.4 方法检出限
用相同的样品处理方法和仪器测量条件,连续测定全流程空白溶液12次,以3倍标准偏差计算方法各元素检出限,铀检出限为0.70μg/g,钍检出限为0.58μg/g。王成玲[30]以敞口酸溶ICP-OES法测定地质样品中的铀含量,方法检出限为0.72 μg/g;秦晓丽等[31]以敞口酸溶ICP-OES法测定地质样品中的钍含量,方法检出限为0.69μg/g;于阗[32]以碱熔ICP-OES法测定矿石中的钍含量,方法检出限为1.26μg/g。碱熔法相较酸溶法引入的基体较多,所以方法检出限水平更高。本实验的检出限略优于敞口酸溶法,能够满足砂岩型铀矿分析测试的需求。
2.5 方法准确度和精密度
对国家标准物质GBW04101、GBW04106,按照1.3节进行样品前处理,分别测定12份平行样品,考察该方法准确度和精密度,所得结果见表 5。根据测量所得数据计算得知,该方法的相对误差为1.47%~1.82%,相对标准偏差(RSD)为1.32%~1.78%。该方法精密度结果优于Martins等[33]采用酸溶ICP-OES法在409.014nm处测定铀、在401.913nm处测定钍的结果。经比较,本方法的准确度和精密度符合行业标准《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)的要求,能够满足砂岩型铀矿中的铀、钍元素的分析要求。
表 5 方法准确度和精密度Table 5. Accuracy and precision tests of the method技术指标 GBW04101铀含量 GBW04106钍含量 标准值(%) 3.29 0.156 测定平均值(%) 3.34 0.159 相对误差(%) 1.52 1.92 RSD(%) 1.32 1.78 对取自鄂尔多斯盆地北部杭锦旗砂岩型铀矿实际样品(经碎样工序制备成粒度为≤74μm)分别采用碱熔法以及本文方法测定铀、钍元素。对比测定结果,不同方法测定结果的相对误差在1.17%~ 3.19%,说明本文方法能够准确测定砂岩型铀矿中的铀钍含量。
3. 结论
本文建立了一种微波消解酸溶,加入EDTA-三乙醇胺作为掩蔽剂,ICP-OES同时测定砂岩型铀矿中铀、钍的分析方法,利用EDTA和三乙醇胺与铁离子络合的特性,有效地消除了铁对铀的测定干扰,在发生器功率1300W、雾化气流速0.7L/min、进样速度1.0mL/min条件下,仪器达到最佳工作状态。相较传统测定方法,本文方法的分析效率更高,并提高了准确度,能够为砂岩型铀矿的评价勘查提供技术支撑。
本文方法也可为其他地质样品中铀、钍元素的分析提供参考。掩蔽剂的比例与加入量可能会因矿种的不同有差异,需要在以后的工作中进一步优化。
-
表 1 特异性微生物增强重金属的植物修复研究实例
Table 1 Specific microorganism enhanced phytoremediation of metal contaminated soil
特异性微生物 植物 重金属 影响机制 文献 假单孢菌(AGB-1) 芒草(Miscanthus sinensis) As、Cd、Cu、Pb、Zn 通过增加植物生物量、叶绿素、蛋白质、超氧化物歧化酶和过氧化氢酶的活性增加重金属的累积 [77] 假单孢菌(Lk9) 龙葵(Solanum nigrum) Cd、Zn、Cu 改善土壤环境中Fe和P的活性,提高植物生物量及其对Cd、Zn、Cu的吸收 [78] 假单孢菌
(PsF84、PsF610)香天竺葵
(Pelargonium graveolens)Cr 分泌吲哚乙酸和铁载体,增加P的活性,提高植物生物量和叶绿素的含量,促进Cr(Ⅵ)在根部的螯合 [79] 拉恩菌属
(JN6)毛蓼(Polygonum pubescens)
和甘蓝型油菜
(Brassica napus)Cd、Pb、Zn 分泌吲哚乙酸和铁载体,提高植物对高浓度Cd、Pb、Zn的耐受性并促进油菜对重金属的吸收与固定 [80] 芽孢杆菌(E2S2、E1S2、E4S1),
寡养单孢菌(E1L)景天
(Sedum plumbizincicola)Cd、Pb、Zn 接种细菌后增加Cd和Zn可提取态含量,促进植物生长及其对重金属的吸收 [81] 芽孢杆菌
(MN3-4)桤木(Alnus firma)和
甘蓝型油菜(Brassica napus)Pb、Cd、Zn、Ni、Cu 分泌吲哚乙酸,促进铅的生物降解及甘蓝根幼苗根的伸长,减少金属植物毒性,促进桤木对Pb积累 [82] 微杆菌(NCr-8),
节杆菌(NCr-1),
芽孢杆菌(NCr-5、NCr-9)天蓝遏蓝菜
(Noccaea caerulescens)、
穿叶遏蓝菜
(Thlaspi perfoliatum)Ni 增强植物的生长和重金属Ni的迁移 [83] 沙雷氏菌
(LRE07)龙葵
(Solanum nigrum L.)Cd 促进植物生长,增加植物生物量及叶片中光合色素的含量 [84] 伯克霍尔德氏菌(SaZR4),
鞘氨醇单孢菌
(SaMR12,Variovorax sp. SaNR1)东南景天
(Sedum alfredii Hance)Zn、Cd SaMR12和SaNR1促进植物生长及其对Zn、Cd的吸收,SaZR4只促进Zn的吸收 [85] -
张花香. 蜡样芽孢杆菌芽孢与金矿藏关系初探[D]: 武汉: 华中师范大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10511-2006078474.htm Zhang H X.Primary Study of Relations between Bacillus Cereus Spores and Gold Mineral Resource[D].Wuhan:Central China Normal University, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10511-2006078474.htm
Cobbina S, Myilla M, Michael K.Small scale gold mining and heavy metal pollution:Assessment of drinking water sources in Datuku in the Talensi-Nabdam district[J].International Journal of Scientific & Technology Research, 2013, 2(1):96-100. http://www.ijstr.org/paper-references.php?ref=IJSTR-0113-5654
Khan S, El-Latif H A, Qiao M, et al.Effects of Cd and Pb on soil microbial community structure and activities[J].Environmental Science and Pollution Research, 2010, 17(2):288-296. doi: 10.1007/s11356-009-0134-4
Zhao H, Xia B, Fan C, et al.Human health risk from soil heavy metal contamination under different land uses near Dabaoshan mine, Southern China[J].Science of the Total Environment, 2012, 417:45-54. https://www.researchgate.net/publication/221759270_Human_health_risk_from_soil_heavy_metal_contamination_under_different_land_uses_near_Dabaoshan_Mine_Southern_China
Fernández D, Roldán A, Azcón R, et al.Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species[J].Microbial Ecology, 2012, 63(4):794-803. doi: 10.1007/s00248-011-9972-y
Bolan N S, Choppala G, Kunhikrishnan A, et al.Microbial transformation of trace elements in soils in relation to bioavailability and remediation[J].Reviews of Environmental Contamination and Toxicology, 2013, 225:1-56. doi: 10.1007%2F978-1-4614-6470-9_1.pdf
Dixit R, Wasiullah, Malaviya D, et al.Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J].Sustainability, 2015, 7(2):2189-2212. doi: 10.3390/su7022189
Franzetti A, Gandolfi I, Fracchia L, et al.Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites[J].Biosurfactants, 2014:361-369. https://www.researchgate.net/profile/Panagiotis_Gkorezis/publication/289107394_Biosurfactant_Use_in_Heavy_Metal_Removal_from_Industrial_Effluents_and_Contaminated_Sites/links/568a3a0208ae1975839d6bfe.pdf?origin=publication_detail
Vangronsveld J, Herzig R, Weyens N, et al.Phytoreme-diation of contaminated soils and groundwater:Lessons from the field[J].Environmental Science and Pollution Research, 2009, 16(7):765-794. doi: 10.1007/s11356-009-0213-6
Sarma H.Metal hyperaccumulation in plants:A review focusing on phytoremediation technology[J].Journal of Environmental Science and Technology, 2011, 4(2):118-138. doi: 10.3923/jest.2011.118.138
Singh A, Prasad S M.Reduction of heavy metal load in food chain:Technology assessment[J].Reviews in Environmental Science and Bio/Technology, 2011, 10(3):199-214. doi: 10.1007/s11157-011-9241-z
Wuana R A, Okieimen F E.Heavy metals in contam-inated soils:A review of sources, chemistry, risks and best available strategies for remediation[J].ISRN Ecology, 2011:1-20. https://www.researchgate.net/publication/309761911_Heavy_metals_in_contaminated_soils_a_review_of_sources_chemistry_risks_and_best_available_strategies_for_remediation
李韵诗, 冯冲凌, 吴晓芙, 等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm Li Y S, Feng C L, Wu X F, et al.A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J].Acta Ecologica Sinica, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm
White P J.Phytoremediation assisted by microorganisms[J].Trends in Plant Science, 2001, 6(11):502. doi: 10.1016/S1360-1385(01)02093-3
Griffiths B S, Philippot L.Insights into the resistance and resilience of the soil microbial community[J].FEMS Microbiology Reviews, 2013, 37(2):112-129. doi: 10.1111/j.1574-6976.2012.00343.x
Bartkowiak A, Lemanowicz J.Application of biochemical tests to evaluate the pollution of the Unislaw basin soils with heavy metals[J].International Journal of Environmental Research, 2014, 8(1):93-100. https://www.researchgate.net/profile/Joanna_Lemanowicz/publication/261698446_Application_of_biochemical_testes_to_evaluate_the_pollution_of_the_Unislaw_Basin_soils_with_heavy_metals/links/0a85e53501ac3d4d9b000000.pdf
韩桂琪, 王彬, 徐卫红, 等.重金属Cd, Zn, Cu, Pb复合污染对土壤微生物和酶活性的影响[J].水土保持学报, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm Han G Q, Wang B, Xu W H, et al.Effects of heavy metal combined pollution on soil microbial indicators and soil enzymatic activity[J].Journal of Soil and Water Conservation, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm
Yang J S, Yang F L, Yang Y, et al.A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis[J].Environmental Pollution, 2016, 213:760-769. doi: 10.1016/j.envpol.2016.03.030
Wang Q, Zhou D, Cang L, et al.Indication of soil heavy metal pollution with earthworms and soil microbial biomass carbon in the vicinity of an abandoned copper mine in Eastern Nanjing, China[J].European Journal of Soil Biology, 2009, 45(3):229-234. doi: 10.1016/j.ejsobi.2008.12.002
Jose J, Giridhar R, Anas A, et al.Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India[J].Environmental Pollution, 2011, 159(10):2775-2780. doi: 10.1016/j.envpol.2011.05.009
李小林, 颜森, 张小平, 等.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J].农业环境科学学报, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm Li X L, Yan S, Zhang X P, et al.Response of microbe quantity and actinomycetes community of heavy metal contaminated soils in lead-zinc mine[J].Journal of Agro-Environment Science, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm
孙嘉龙, 肖唐付, 邹晓, 等.黔西南滥木厂铊矿化区铊污染的微生物效应[J].地球与环境, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm Sun J L, Xiao T F, Zou X, et al.Microbial effects induced by thallium accumulation in the Lanmuchang Tl mineralised area, Southwest Guizhou Province[J].Earth and Environment, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm
Sheng Z, Chaohai W, Chaodeng L, et al.Damage to DNA of effective microorganisms by heavy metals:Impact on wastewater treatment[J].Journal of Environmental Sciences, 2008, 20(12):1514-1518. doi: 10.1016/S1001-0742(08)62558-9
Zhang X, Li F, Liu T, et al.The variations in the soil enzyme activity, protein expression, microbial biomass, and community structure of soil contaminated by heavy metals[J].ISRN Soil Science, 2013:1-12. https://www.researchgate.net/profile/Xi_Zhang25/publication/259533502_The_Variations_in_the_Soil_Enzyme_Activity_Protein_Expression_Microbial_Biomass_and_Community_Structure_of_Soil_Contaminated_by_Heavy_Metals/links/0deec52c6d632a2d22000000.pdf?origin=publication_detail
Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al.Diversity of microorganisms from forest soils differently polluted with heavy metals[J].Applied Soil Ecology, 2013, 64:7-14. doi: 10.1016/j.apsoil.2012.11.004
Colin V L, Villegas L B, Abate C M.Indigenous microor-ganisms as potential bioremediators for environments contaminated with heavy metals[J].International Biodeterioration & Biodegradation, 2012, 69:28-37. https://www.researchgate.net/publication/271560060_Indigenous_microorganisms_as_potential_bioremediators_for_environments_contaminated_with_heavy_metals
湛方栋, 何永美, 李元, 等.废弃铅锌矿区和非矿区小花南芥根际真菌的分离及其铅耐性研究[J].生态环境学报, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm Zhan F D, He Y M, Li Y, et al.Isolation and Pb tolerance of rhizosphere fungi of Arabis alpine in abandoned lead-zinc mining and non-mining area[J].Ecology and Environmental Sciences, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm
Muñoz A, Ruiz E, Abriouel H, et al.Heavy metal tolerance of microorganisms isolated from wastewaters:Identification and evaluation of its potential for biosorption[J].Chemical Engineering Journal, 2012, 210:325-332. doi: 10.1016/j.cej.2012.09.007
Shoeb E, Badar U, Akhter J, et al.Horizontal gene transfer of stress resistance genes through plasmid transport[J].World Journal of Microbiology and Biotechnology, 2012, 28(3):1021-1025. doi: 10.1007/s11274-011-0900-6
Schwitzguébel J P, van der Lelie D, Baker A, et al.Phytoremediation:European and American trends successes, obstacles and needs[J].Journal of Soils and Sediments, 2002, 2(2):91-99. doi: 10.1007/BF02987877
Li P S, Tao H C.Cell surface engineering of micro-organisms towards adsorption of heavy metals[J].Critical Reviews in Microbiology, 2015, 41(2):140. doi: 10.3109/1040841X.2013.813898
Kemner K M, Kelly S D, Lai B, et al.Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis[J].Science, 2004, 306(5696):686-687. doi: 10.1126/science.1103524
He Z, Gao F, Sha T, et al.Isolation and characterization of a Cr(Ⅵ)-reduction Ochrobactrum sp.strain CSCr-3 from chromium landfill[J].Journal of Hazardous Materials, 2009, 163(2):869-873. http://www.sciencedirect.com/science/article/pii/S0304389408010704
Huang J H.Impact of microorganisms on arsenic biogeochemistry:A review[J].Water, Air & Soil Pollution, 2014, 225(2):1-25. doi: 10.1007%2Fs11270-013-1848-y.pdf
白红娟, 张肇铭, 贠妮, 等.球形红细菌去除和转化铅的机理研究[J].环境科学学报, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm Bai H J, Zhang Z M, Yun N, et al.Studies on removal and transformation mechanism of lead by Rhodobacter sphaeroides[J].Acta Scientiae Circumstantiae, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm
Govarthanan M, Lee K J, Cho M, et al.Significance of autochthonous Bacillus sp.KK1 on biomineralization of lead in mine tailings[J].Chemosphere, 2013, 90(8):2267-2272. doi: 10.1016/j.chemosphere.2012.10.038
Reith F, Rogers S L.Assessment of bacterial commu-nities in auriferous and non-auriferous soils using genetic and functional fingerprinting[J].Geomicrobiology Journal, 2008, 25(3):203-215. https://www.researchgate.net/publication/248985091_Assessment_of_Bacterial_Communities_in_Auriferous_and_Non-Auriferous_Soils_Using_Genetic_and_Functional_Fingerprinting
Mehrnia R.Using Fractal Distribution of Geomicrobio-logical Anomalies for Prospecting Gold Mineralization Potentials in North West of Iran[C]//Proceedings of The 1st International Applied Geological Congress.Iran:Department of Geology, Islamic Azad University.2010:789-794.
王红梅, 杨逢清, 谢树成, 等.第四纪土壤微生物与金离子的相互作用实验:微生物找矿依据[J].海洋地质与第四纪地质, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm Wang H M, Yang F Q, Xie S C, et al, Interaction between gold ion and quaternary soil microorganism:Bioexploration indication[J].Marine Geology & Quaternary Geology, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm
Parduhn N L, 徐年生.矿产微生物勘探法在美国加州梅斯基特金矿区的应用效果[J].黄金地质科技, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm Parduhn N L, Xu N S.Application of mineral microbial prospecting method in California gold mine[J].Gold Geology Technology, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm
Reith F, Mcphail D C, Christy A G.Bacillus cereus, gold and associated elements in soil and regolith samples from Tomakin Park gold mine in South-Eastern New South Wales, Australia[J].Journal of Geochemical Exploration, 2005, 85(2):81-98. doi: 10.1016/j.gexplo.2004.11.001
汤显春, 谢树成.广西四川金矿床区土壤样品中蜡状芽孢杆菌的分离和鉴定[J].华中师范大学学报(自然科学版), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm Tang X C, Xie S C.Isolation and identification of Bacillus cereus from soil samples of gold deposit in Guangxi and Sichuan[J].Journal of Centeral China Normal University (Natural Science), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm
Reith F, Zammit C M, Pohrib R, et al.Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits[J].Applied and Environmental Microbiology, 2015, 81(22):7822-7832. doi: 10.1128/AEM.01856-15
Tokhmechi B, Mamarabadi M.Using bacillus cereus as a geo-biological marker for gold prospecting in Iran[J].International Journal of Mining & Geo-Engineering, 2012, 46(2):209-221. https://journals.ut.ac.ir/article_51328.html
Yang Z, Zhang Z, Chai L, et al.Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp.Z-90[J].Journal of Hazardous Materials, 2016, 301:145-152. doi: 10.1016/j.jhazmat.2015.08.047
Ren W X, Li P J, Geng Y, et al.Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J].Journal of Hazardous Materials, 2009, 167(1):164-169. https://www.researchgate.net/profile/Wanxia_Ren/publication/24030283_Biological_leaching_of_heavy_metals_from_a_contaminated_soil_by_Aspergillus_niger/links/573478b408aea45ee83ac4fd.pdf?origin=publication_detail
Li X, Wu Y, Zhang C, et al.Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J].Chemical Engineering Journal, 2016, 306:393-400. doi: 10.1016/j.cej.2016.07.079
Fosso-Kankeu E, Mulaba-Bafubiandi A, Mamba B, et al.Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms[J].Journal of Environmental Management, 2011, 92(10):2786-2793. doi: 10.1016/j.jenvman.2011.06.025
Murugavelh S, Mohanty K.Isolation, identification and characterization of Cr(Ⅵ) reducing bacillus cereus from chromium contaminated soil[J].Chemical Engineering Journal, 2013, 230:1-9. doi: 10.1016/j.cej.2013.06.049
Mohd B Z, Ali Hamood A W, Ibrahim Z, et al.Biosorption of As(Ⅲ) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:Equilibrium and kinetic study[J].Applied Biochemistry and Biotechnology, 2013, 171(8):2247-2261. doi: 10.1007/s12010-013-0490-x
金羽, 曲娟娟, 李影, 等.一株耐铅细菌的分离鉴定及其吸附特性研究[J].环境科学学报, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm Jin Y, Qu J J, Li Y, et al.Isolation, identification and Pb(Ⅱ) biosorption characterization of a lead-resistant strain[J].Acta Scientiae Circumstantiae, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm
Chakravarty R, Banerjee P C.Mechanism of cadmium binding on the cell wall of an acidophilic bacterium[J].Bioresource Technology, 2012, 108:176-183. doi: 10.1016/j.biortech.2011.12.100
Guin & #233; V, Spadini L, Sarret G, et al.Zinc sorption to three gram-negative bacteria:Combined titration, modeling, and EXAFS study[J].Environmental Science & Technology, 2006, 40(6):1806-1813. https://www.researchgate.net/profile/Cecile_Delolme/publication/7208018_Zinc_Sorption_to_Three_Gram-Negative_Bacteria_Combined_Titration_Modeling_and_EXAFS_Study/links/02e7e51a37fb424f8c000000/Zinc-Sorption-to-Three-Gram-Negative-Bacteria-Combined-Titration-Modeling-and-EXAFS-Study.pdf
Comte S, Guibaud G, Baudu M.Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values[J].Journal of Hazardous Materials, 2008, 151(1):185-193. doi: 10.1016/j.jhazmat.2007.05.070
Kumpiene J, Bert V, Dimitriou I, et al.Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO)[J].Science of the Total Environment, 2014, 496:510-522. doi: 10.1016/j.scitotenv.2014.06.130
Jin H P, Bolan N, Megharaj M, et al.Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J].Journal of Environmental Management, 2011, 92(4):1115-1120. doi: 10.1016/j.jenvman.2010.11.031
Jackson T A, Vlaar S, Nguyen N, et al.Effects of bioavailable heavy metal species, arsenic, and acid drainage from mine tailings on a microbial community sampled along a pollution gradient in a freshwater ecosystem[J].Geomicrobiology Journal, 2015, 32(8):724-750. doi: 10.1080/01490451.2014.969412
Braud A, Jézéquel K, Vieille E, et al.Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores[J].Water, Air, & Soil Pollution, 2006, 6(3-4):261-279. doi: 10.1007%2Fs11267-005-9022-1.pdf
Baum C, Hrynkiewicz K, Leinweber P, et al.Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J].Journal of Plant Nutrition and Soil Science, 2006, 169(4):516-522. doi: 10.1002/(ISSN)1522-2624
黄艺, 陈有键, 陶澍.菌根植物根际环境对污染土壤中Cu, Zn, Pb, Cd形态的影响[J].应用生态学报, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm Huang Y, Chen Y J, Tao S.Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil[J].Chinese Journal of Applied Ecology, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm
Wu S, Luo Y, Cheung K, et al.Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil:A laboratory study[J].Environmental Pollution, 2006, 144(3):765-773. doi: 10.1016/j.envpol.2006.02.022
Citterio S, Prato N, Fumagalli P, et al.The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J].Chemosphere, 2005, 59(1):21-29. doi: 10.1016/j.chemosphere.2004.10.009
Christie P, Li X, Chen B.Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc[J].Plant and Soil, 2004, 261(1):209-217. doi: 10.1023/B:PLSO.0000035542.79345.1b
Azcón R, del Carmen Perálvarez M, Biró B, et al.Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste[J].Applied Soil Ecology, 2009, 41(2):168-177. doi: 10.1016/j.apsoil.2008.10.008
Rajkumar M, Prasad M N V, Swaminathan S, et al.Climate change driven plant-metal-microbe interactions[J].Environment International, 2013, 53:74-86. doi: 10.1016/j.envint.2012.12.009
Ma Y, Prasad M, Rajkumar M, et al.Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J].Biotechnology Advances, 2011, 29(2):248-258. doi: 10.1016/j.biotechadv.2010.12.001
López M L, Peralta-Videa J R, Benitez T, et al.Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J].Chemosphere, 2005, 61(4):595-598. doi: 10.1016/j.chemosphere.2005.02.028
Sun L N, Zhang Y F, He L Y, et al.Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J].Bioresource Technology, 2010, 101(2):501-509. doi: 10.1016/j.biortech.2009.08.011
Chen Y X, Wang Y P, Lin Q, et al.Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J].Environment International, 2005, 31(6):861-866. doi: 10.1016/j.envint.2005.05.044
Abou-Shanab R, Ghanem K, Ghanem N, et al.The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils[J].World Journal of Microbiology and Biotechnology, 2008, 24(2):253-262. doi: 10.1007/s11274-007-9464-x
Azcón R, del Carmen Perálvarez M, Roldán A, et al.Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants[J].Microbial Ecology, 2010, 59(4):668-677. doi: 10.1007/s00248-009-9618-5
Sheng X F, Xia J J, Jiang C Y, et al.Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution, 2008, 156(3):1164-1170. doi: 10.1016/j.envpol.2008.04.007
Sheng X, He L, Wang Q, et al.Effects of inoculation of biosurfactant-producing Bacillus sp.J119 on plant growth and cadmium uptake in a cadmium-amended soil[J].Journal of Hazardous Materials, 2008, 155(1):17-22. https://www.researchgate.net/publication/263140199_Inoculation_of_Soil_with_Cadmium-Resistant_Bacteria_Enhances_Cadmium_Phytoextraction_by_Vetiveria_nemoralis_and_Ocimum_gratissimum
Jiang C Y, Sheng X F, Qian M, et al.Isolation and characterization of a heavy metal-resistant Burkholderia sp.from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J].Chemosphere, 2008, 72(2):157-164. doi: 10.1016/j.chemosphere.2008.02.006
Jankong P, Visoottiviseth P.Effects of arbuscular mycor-rhizal inoculation on plants growing on arsenic contaminated soil[J].Chemosphere, 2008, 72(7):1092-1097. doi: 10.1016/j.chemosphere.2008.03.040
Ike A, Sriprang R, Ono H, et al.Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J].Chemosphere, 2007, 66(9):1670-1676. doi: 10.1016/j.chemosphere.2006.07.058
Babu A G, Shea P J, Sudhakar D, et al.Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil[J].Journal of Environmental Management, 2015, 151:160-166. doi: 10.1016/j.jenvman.2014.12.045
Chen L, Luo S, Li X, et al.Interaction of Cd-hyper-accumulator Solanum nigrum L.and functional endophyte Pseudomonas sp.Lk9 on soil heavy metals uptake[J].Soil Biology & Biochemistry, 2014, 68(1):300-308. http://www.sciencedirect.com/science/article/pii/S0038071713003659
Dharni S, Srivastava A K, Samad A, et al.Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv.bourbon) grown on tannery sludge amended soil[J].Chemosphere, 2014, 117:433-439. doi: 10.1016/j.chemosphere.2014.08.001
He H, Ye Z, Yang D, et al.Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J].Chemosphere, 2013, 90(6):1960-1965. doi: 10.1016/j.chemosphere.2012.10.057
Ma Y, Oliveira R S, Nai F, et al.The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J].Journal of Environmental Management, 2015, 156:62-69. doi: 10.1016/j.jenvman.2015.03.024
Shin M N, Shim J, You Y, et al.Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J].Journal of Hazardous Materials, 2012, 199:314-320. http://www.sciencedirect.com/science/article/pii/S0304389411013604
Visioli G, D'Egidio S, Vamerali T, et al.Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens[J].Chemosphere, 2014, 117:538-544. doi: 10.1016/j.chemosphere.2014.09.014
Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J].Chemosphere, 2012, 89(6):743-750. doi: 10.1016/j.chemosphere.2012.07.005
Zhang X, Lin L, Zhu Z, et al.Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii[J].International Journal of Phytoremediation, 2013, 15(1):51-64. doi: 10.1080/15226514.2012.670315
-
期刊类型引用(16)
1. 严妍. 测定地质样品中铌、钽、铪、锆不同分析方法的比较. 安徽化工. 2024(01): 148-154 . 百度学术
2. 夏传波,成学海,姜云,张文娟,陈明桂,赵伟. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素. 岩矿测试. 2024(02): 247-258 . 本站查看
3. 李振,钟莅湘,崔承洋,李志伟. 碱熔-电感耦合等离子体质谱法测定铌钽矿中铌钽锂铍. 矿产综合利用. 2024(03): 200-205 . 百度学术
4. 刘江斌,牛红莉,党亮. 二米光栅——原子发射光谱法应用于地质样品多元素半定量全分析. 甘肃地质. 2024(03): 84-88 . 百度学术
5. 杨林,邹国庆,周武权,修凤凤,张婷婷,隋东,张行荣. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯. 中国无机分析化学. 2023(08): 825-830 . 百度学术
6. 于汀汀,王蕾,郭琳,安子怡,臧慧媛,马生凤. 酸溶-电感耦合等离子体发射光谱测定不同类型铍矿中的主次量元素方法优化. 岩矿测试. 2023(05): 923-933 . 本站查看
7. 李黎,郭冬发,黄秋红,李伯平,王娅楠,谢胜凯,刘瑞萍. 混合硼酸锂盐熔融-混酸消解-ICP-MS测定伟晶岩样品中的稀土、铀、钍等元素. 铀矿地质. 2022(02): 361-369 . 百度学术
8. 杨萍,党铭铭,郭永艳,张碧兰. 五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量. 理化检验-化学分册. 2022(07): 773-776 . 百度学术
9. 肖红新,庄艾春. 化学分析样品分解技术研究进展. 化学分析计量. 2021(04): 97-104 . 百度学术
10. 党铭铭,杨萍,雷勇,温智敏,张碧兰. 电感耦合等离子体发射光谱技术测定多金属伴生矿中钨钼铋两种消解方法的对比. 岩矿测试. 2021(04): 603-611 . 本站查看
11. 夏传波,成学海,赵伟,王卿,孙雨沁. 增压消解-电感耦合等离子体质谱法测定硅藻土中26种微量元素. 理化检验(化学分册). 2020(03): 277-283 . 百度学术
12. 秦明,朱尧伟,班俊生,杨惠玲. 微波消解–电感耦合等离子体发射光谱法测定多金属矿中10种主次元素. 化学分析计量. 2019(02): 45-49 . 百度学术
13. 王力强,魏双,王家松,郑智慷,张楠,刘义博. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫. 地质调查与研究. 2019(04): 259-262 . 百度学术
14. 秦晓丽,田贵,李朝长,蒋智林. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾. 岩矿测试. 2019(06): 741-746 . 本站查看
15. 郭锋. 碱熔-电感耦合等离子体发射光谱法测定云英岩矿石中铌钽. 当代化工研究. 2018(06): 102-104 . 百度学术
16. 赵晓亮,李志伟,王烨,王君玉,仲伟路,陈砚. 铌钽精矿标准物质研制. 岩矿测试. 2018(06): 687-694 . 本站查看
其他类型引用(0)