Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples
-
摘要: 岩石中气体化学组成的分析具有重要意义。载气保护下的岩石脱气,过程比较复杂;高真空下岩石脱气的气相色谱分析报道较少,一般不能测量气体的总量;真空脱气质谱法对于分子量相近的气体,很难进行测量。针对上述问题,本文研制了高真空岩石样品脱气分析装置,该装置真空度 < 10-4 Pa,空白样品压强 < 0.1 Pa,N2含量测量精度为0.63%,标准温压下最少可测样品量 < 1 mm3。将其与带脉冲放电检测器的气相色谱仪联用,实现了岩石脱气及其微升量级气体化学组成的高灵敏气相色谱分析。利用本系统分析了五大连池火山岩、松辽盆地储层岩石和四川盆地页岩样品中释放的气体,结果表明:相比以往的实验装置和方法,该系统能够直接测量岩石脱出气体的总量,分段加热脱气分析样品用量更少,气体组成分析灵敏度更高,检测的主要成分是岩石脱气常见的成分,针对性较强。Abstract: It is important to determine the chemical composition of gases trapped in rocks. The technique of using carrier gas and chemical analysis to release and collect gases is very time-consuming. There is little reported about Gas Chromatography analysis of rock degassing under high vacuum, and the total amount of gases are not commonly measured. It is difficult to analyze gases with similar molecular weights by Mass Spectrometer and because of these problems, a high vacuum rock sample degassing device has been developed. The vacuum of the device is < 10-4 Pa. The blank sample pressure is < 0.1 Pa, the accuracy for N2 in the air is 0.63%, and the minimum measurable quantity is < 1 mm3 at standard temperature and pressure. The high vacuum device is coupled with a Gas Chromatography with a pulsed discharge detector, which gives a high sensitive gas chromatographic analysis of the chemical composition of gases in rocks. The gas released from Wudalianchi volcanic rocks in the Songliao Basin reservoirs and shale samples from the Sichuan basin have been analyzed using this system. The results show that the total amount of gas released from the rock can be directly measured. Less sample weight is needed during stage heating, and gas composition analysis is more sensitive compared with the previous experimental device and method. The analyzed main component targeted is the common component in gas-released rock.
-
-
表 1 页岩样品的高真空电磁破碎脱气化学组成分析结果
Table 1 Chemical compositions of gases released from shale by high vacuum electromagnetic crushing
样品编号 气体含量(mm3) H2 O2+Ar N2 CH4 CO CO2 C2H4 C2H6 C3H8 1 20.06 0.00 0.45 92.96 1.64 135.98 0.00 0.93 0.00 2 4.58 0.01 0.19 14.26 0.85 82.08 0.00 0.04 0.00 3 7.21 0.00 0.15 2.10 0.00 92.39 0.03 0.09 0.01 4 12.74 0.06 4.77 10.44 0.00 5.83 0.00 0.14 0.03 5 4.46 0.01 0.23 9.67 0.41 13.17 0.00 0.04 0.00 6 6.89 0.01 0.34 24.19 0.07 41.35 0.00 0.15 0.00 7 7.67 0.01 0.28 17.06 0.05 10.89 0.00 0.04 0.00 -
Zelenski M E, Taran Y A, Dubinina E O, et al.Sources of volatiles for a subduction zone volcano:Mutnovsky volcano, Kamchatka[J].Geochemistry International, 2012, 50(6):502-521. doi: 10.1134/S001670291204009X
Zhang M L, Guo Z F, Sano Y J, et al.Stagnant subducted Pacific slab-derived CO2 emissions:Insights into magma degassing at Changbaishan volcano, NE China[J].Journal of Asian Earth Sciences, 2015, 106:49-63. doi: 10.1016/j.jseaes.2015.01.029
Benavente O, Tassi F, Reich M, et al.Chemical and isotopic features of cold and thermal fluids discharged in the southern volcanic zone between 32.5°S and 36°S:Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of central Chile[J].Chemical Geology, 2016, 420:97-113. doi: 10.1016/j.chemgeo.2015.11.010
Kuritani T, Ohtani E, Kimura J I.Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation[J].Nature Geoscience, 2011, 4:713-716. doi: 10.1038/ngeo1250
GoncharovA G, Ionov D A, Doucet L S, et al.Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle:New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia[J].Earth and Planetary Science Letters, 2012, 357-358:99-110. doi: 10.1016/j.epsl.2012.09.016
Frezzotti M L, Ferrando S, Tecce F, et al.Water content and nature of solutes in shallow-mantle fluids from fluid inclusions[J].Earth and Planetary Science Letters, 2012, 351-352:70-83. doi: 10.1016/j.epsl.2012.07.023
Colin A, Burnard P, Marty B.Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He-40Ar*-CO2) of the mantle by laser ablation analysis of individual MORB vesicles[J].Earth and Planetary Science Letters, 2013, 361:183-194. doi: 10.1016/j.epsl.2012.10.022
张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm
杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm
Frezzotti M L, Tecce F, Casagli A.Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112:1-20. doi: 10.1016/j.gexplo.2011.09.009
倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm
Clay P L, Busemann H, Sherlock S C, et al.40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland[J].Chemical Geology, 2015, 403:99-110. doi: 10.1016/j.chemgeo.2015.02.041
Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007
米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm Mi J Q, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm
李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050 Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050
王健, 王毓, 胡永华, 等.热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J].质谱学报, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035 Wang J, Wang Y, Hu Y H, et al.Study on the pyrolysis of solid materials with pyrolysis-online vacuum ultraviolet photoionization mass spectrometry[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035
史宝光, 王晓锋, 徐永昌, 等.烃源岩解析气获取新方法研究[J].沉积学报, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm Shi B G, Wang X F, Xu Y C, et al.New experimental methodology research for adsorbed gases on hydrocarbon-source rocks[J].Acta Sedimentologica Sinica, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm
Shi B G, Shen P, Wang X F, et al.Groundbreaking gas source rock correlation research based on the application of a new experimental approach for adsorbed gas[J].Chinese Science Bulletin, 2012, 57:4746-4752. doi: 10.1007/s11434-012-5504-5
Zhang T W, Yang R S, Milliken K L, et al.Chemical and isotopic composition of gases released by crush methods from organic rich mudrocks[J].Organic Geochemistry, 2014, 73:16-28. doi: 10.1016/j.orggeochem.2014.05.003
Liu G, Wang X B, Li L W.Chemical composition of gas from mantle xenoliths in alkali-basalt from Damaping, Hebei[J].Chinese Science Bulletin, 1997, 42(6):470-472. doi: 10.1007/BF02882594
OklandI, Huang S, Thorseth I H.Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks[J].Chemical Geology, 2014, 387:22-34. doi: 10.1016/j.chemgeo.2014.08.003
杨华敏, 王杰, 陶成, 等.储层岩石中稀有气体组分和同位素分析技术[J].天然气地球科学, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681 Yang H M, Wang J, Tao C, et al.Measurement technology for content and isotopic compositions of noble gases in reservoir rocks[J].Natural Gas Geoscience, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681
Xing C M, Wang C Y, Zhang M J.Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores[J].Science China Earth Science, 2012, 55:1782-1795. doi: 10.1007/s11430-012-4468-2
Fu P E, Tang Q Y, Zhang M J, et al.Ore genesis of the Kalatongke Cu-Ni sulfide deposits, Western China:Constraints from volatile chemical and carbon isotopic compositions[J].Acta Geologica Sinica, 2012, 86(3):568-578. doi: 10.1111/acgs.2012.86.issue-3
余明, 汤庆艳, 张铭杰, 等.腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约[J].岩石学报, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm Yu M, Tang Q Y, Zhang M J, et al.Compositions and origin of volatiles in Tengchong cenozoic volcanism from SE margin of the Tibetan Plateau:Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks[J].Acta Petrologica Sinica, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm
Li L W, Guo L J, Xia Y Q, et al.A High Vacuum Automatic Inlet System for Microliter Gas Mass Spectrometry[C]//The Abstract of the 13th International Conference on Gas Geochemistry.2015:149-150.
Plessen B, Luders V.Simultaneous measurements of gas isotopic compositions of fluid inclusion gases (N2, CH4, CO2) using continuous-flow isotope ratio mass spectrometry[J].Rapid Communications Mass Spectrometry, 2012, 26:1157-1161. doi: 10.1002/rcm.6201
Klein F, Bach W, McCollom T M.Compositional controls on hydrogen generation during serpentinization of ultramafic rocks[J].Lithos, 2013, 178:55-69. doi: 10.1016/j.lithos.2013.03.008
Wang X B, Ouyang Z Y, Zhuo S G, et al.Serpentini-zation, abiogenic organic compounds, and deep life[J].Science China (Earth Sciences), 2014, 57(5):878-887. doi: 10.1007/s11430-014-4821-8
Tang Q Y, Zhang M J, Li C S, et al.The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere[J].Chemical Geology, 2013, 339:84-91. doi: 10.1016/j.chemgeo.2012.08.031
Pearson D G, Brenker F E, Nestola F, et al.Hydrous mantle transition zone indicated by ringwoodite included within diamond[J].Nature, 2014, 507:221-224. doi: 10.1038/nature13080
李传亮, 朱苏阳.页岩气其实是自由气[J].岩性油气藏, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm Li C L, Zhu S Y.Shale gas is free gas underground[J].Lithologic Reservoir, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm
Bali E, Audétat A, Keppler H.Water and hydrogen are immiscible in Earth's mantle[J].Nature, 2013, 495:220-222. doi: 10.1038/nature11908
Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:An FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011
尚慧. 页岩中气体组成实验测定方法及实例分析[D]. 兰州: 兰州大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10730-1014304182.htm Shang H.Experimental Method for the Gas Composition Measurement in the Shale and a Primary Application[D].Lanzhou:Lanzhou University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10730-1014304182.htm
Dublyansky Y V.Design of two crushing devices for release of the fluid inclusion volatiles[J].Central European Journal of Geosciences, 2012, 4(2):219-224. http://www.academia.edu/2050879/Design_of_two_crushing_devices_for_release_of_the_fluid_inclusion_volatiles