Study on the Elemental Fractionation Effect of CGSG Reference Materials and the Related Within-Unit Homogeneity of Major and Trace Elements
-
摘要: 探究CGSG系列标准物质(CGSG-1、CGSG-2、CGSG-4、CGSG-5)的元素分馏效应及均匀性问题有助于开展其质量评估和应用推广。本文采用电子探针(EMPA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)研究了CGSG标准物质中的元素分馏效应、主量和微量元素单元内均匀性,并报道了主量和微量元素分析数据。结果表明,在50 μm激光束斑下,CGSG系列标准物质的元素分馏效应可忽略不计。EMPA均匀性指数结果显示,CGSG标准物质主量元素的单元内均匀性满足要求;以MPI-DING标准物质为参照,LA-ICP-MS测试CGSG标准物质中的大多数微量元素的单元内均匀性良好。与已报道的数据相比,本文报道的EMPA主量元素数据偏差在2%以内;LA-ICP-MS主量元素数据偏差在5%以内,微量元素数据基本匹配,少数元素由于分析不确定度较大等原因,如Cr、Ge、Cd、As、Tl等与已报道数据偏差较大。总体上,本文报道的分析数据可为CGSG定值数据库提供进一步的补充。
-
关键词:
- CGSG标准物质 /
- 元素分馏 /
- 均匀性检验 /
- 电子探针 /
- 激光剥蚀电感耦合等离子体质谱
Abstract: Studies on elemental fractionation and homogeneity of CGSG reference materials (CGSG-1, CGSG-2, CGSG-4 and CGSG-5) promote quality assessment and application. The elemental fractionation and within-unit homogeneity of CGSG reference materials were evaluated using Electron Microprobe and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Meanwhile, the major and trace element contents were also reported. The results showed that the elemental fractionation of CGSG reference materials was negligible for 50 μm spot size. Electron Microprobe homogeneity index illustrated that the homogeneity of major elements in CGSG reference materials is approvingly acceptable, and most trace elements possess same homogeneity grade with MPI-DING reference materials. Analytical results of major elements by Electron Microprobe and LA-ICP-MS are consistent with published data within 2% and 5% errors, respectively. Analytical results of trace elements by LA-ICP-MS are generally in agreement with the published data. Some elements such as Cr, Ge, Cd, As and Tl show a larger deviation due to the large uncertainties of the analytical technique. In general, the analysis data reported here could supplement the CGSG value database.-
Keywords:
- CGSG reference materials /
- elemental fractionation /
- homogeneity test /
- EMPA /
- LA-ICP-MS
-
冈底斯弧背断隆带东段广泛发育燕山期岩浆作用。Ding等[1]利用独居石Th-Pb定年和绢云母40Ar/39Ar定年限定了该带淡色花岗岩年龄分布在130~140 Ma之间;翟庆国等[2-3]利用全岩K-Ar法和锆石U-Pb法测定了南木林县折无地区二云母花岗岩和冈底斯中段淡色花岗岩年龄分别93.4 Ma和133.9±0.9 Ma;杨德明等[4]、和钟铧等[5]利用SHRIMP 锆石U-Pb法分别测定了措麦地区含石榴子石二云母花岗岩、桑巴区后碰撞花岗岩类年龄为123.4 Ma、117~121 Ma;高一鸣等[6]、费光春等[7]、崔晓亮等[8]利用锆石U-Pb法分别测定亚贵拉石英斑岩、洞中拉花岗斑岩和石英斑岩年龄为126.7~130.6 Ma、124.4±1.9 Ma、126.9±1.1 Ma。杜欣等[9]、连永牢等[10-12]、唐菊兴等[13]认为念青唐古拉地区存在与燕山晚期中酸性侵入岩浆活动有关的钨-钼-铜-铅-锌-银矿床成矿系列,但尚未开展成矿时代研究。因此,与燕山期岩浆活动有关的成矿时限仍然是需要解决的重大问题。
巴嘎拉东铅锌矿床位于冈底斯弧背断隆带上的蒙亚啊—龙玛拉矿集区内,矿床成因类型应属于岩浆热液有关的石英脉型铅锌矿床,整体地质勘查和科学研究程度均较低,成矿时代尚未拟定。矿区广泛侵位的黑云母花岗岩与矿化密切相关,本文通过详细的钻孔和平硐编录,确认巴嘎拉东矿区Pb-Zn矿化发生于岩体侵位之后,对黑云母花岗岩开展了LA-ICP-MS锆石U-Pb年代学研究,其侵位时代代表了矿区成矿时代上限。此外,利用锆石微量元素组成对岩体形成温度及其形成时的构造环境予以探讨。该项工作对于提升矿床整体研究程度以及总结蒙亚啊—龙玛拉矿集区成岩成矿时间规律具有较为重要的价值。
1. 矿区地质概况
矿区地层出露简单,主要为一套凝灰岩和第四系。由于矿床地质勘查和科研工作程度极低,该套凝灰岩的时代和地层归属尚不明确。矿区侵入岩主要为黑云母花岗岩,出露于北部和中部(图 1)。钻孔和平硐编录结果显示,黑云母花岗岩发育较强的硅化、白云母化和黄铁矿化,与成矿关系密切。矿区构造形式以断层为主,分别为北东向F1断层、北北西向F2断层和北西向F3断层,三组断层与成矿关系均不大。铅锌矿体主要赋存于黑云母花岗岩与凝灰岩接触的强硅化部位,矿体产出位置距离二者直接接触部位常具有一定的距离。目前,矿区范围内已经圈定7条铅锌矿(化)体,以Pb-1号矿体规模最大,该矿体亦为矿床主采矿体。Pb-1号矿体形态呈脉状,地表北西-南东向展布(图 1),沿走向控制长度约175 m,平均厚度约8 m;矿体倾向南西,倾角整体较缓,多为23°~30°之间。矿体中矿石矿物简单,主要为方铅矿、闪锌矿、黄铁矿,少量黄铜矿;脉石矿物以石英为主,少量绿帘石、绿泥石、阳起石、白云母和方解石等。矿石构造以浸染状构造为主,其次为脉状、团斑状和条带状;矿石结构主要为结晶作用形成的半自形晶-他形晶结构,其他结构包括交代结构、固溶体分离结构等。矿床围岩蚀变主要为硅化、绿帘石化、绿泥石化、白云母化和角岩化,以强硅化与铅锌成矿关系最为密切。
2. 样品采集与U-Pb定年测试
2.1 样品采集和处理
用于锆石U-Pb年代学和微量元素地球化学测试的黑云母花岗岩样品取自Pb-1号矿体的ZK001钻孔。黑云母花岗岩为中粒花岗结构、块状构造,新鲜面呈浅肉红色(图 2a),硅化较强的部位呈灰白色(图 2b)。如图 2c、d所示,岩石主要由石英(35%~40%)、钾长石(30%~35%)、斜长石(20%~25%)、黑云母(约10%)以及少量的锆石等副矿物组成。显微镜下观察可见石英交代钾长石形成的显微文象结构(图 2e);部分岩石中可见半自形黄铁矿(图 2c~e)以及流体蚀变所形成的片状或放射状白云母集合体(图 2f)。
黑云母花岗岩破碎至自然粒度,经摇床、淘洗、电磁及重力分选,分离出锆石单矿物,再由双目镜下挑纯,将分选出的锆石清洗后制成环氧树脂样品靶,将锆石磨制抛光后用于阴极发光(CL)、LA-ICP-MS锆石U-Pb年代学和微量元素测试。
2.2 U-Pb年代定年方法
锆石LA-ICP-MS U-Pb年代学和微量元素分析测试于中国地质大学(北京)地质过程与矿产资源国家重点实验室矿床地球化学微区分析室完成。ICP-MS仪器为美国产Thermo Fisher X-Series Ⅱ型四极杆电感耦合等离子体质谱仪,激光剥蚀系统为美国产Geolas 193准分子固体进样系统。测试过程中,对锆石进行激光剥蚀的斑束直径为32 μm,频率为8 Hz,激光剥蚀以He作为载气,Ar为补偿气。采用美国国家标准参考物质NIST610对仪器进行最佳化,并将其作为微量元素含量测定的外标。定年外标采用标准锆石91500,监控样品采用标准锆石GJ-1。每5个样品测试点测定两次锆石91500标样,每个样品点的信号采集时间为100 s,其中前20 s为背景信号采集时间,样品信号采集时间为50 s[14]。测试完成后,应用软件ICPMSDataCal对分析数据进行处理,具体方法可参阅文献[15]。
3. U-Pb定年结果与分析
3.1 锆石U-Pb年龄
本次研究对黑云母花岗岩分选出来的锆石进行了14个点位的LA-ICP-MS锆石U-Pb年代学和微量元素地球化学测试工作,测试结果分别列于表 1和表 2中。阴极发光图像(图 3)显示,锆石颗粒整体较为规则,晶形较好,多为短柱状,个别为长柱状。锆石粒度介于80~150 μm之间,锆石颗粒长宽比值多介于2.5:1~2:1之间,个别颗粒长宽比值可达到5:1。阴极发光图像显示所有锆石均具有较为清晰的振荡环带结构,具有岩浆成因锆石的特征[16]。测试过程中尽量避开锆石中的包体、残留的核部以及锆石的裂隙处,从而达到最优的效果。
表 1 巴嘎拉东铅锌矿床黑云母花岗岩锆石U-Pb年代学测试结果Table 1. Isotopic data of U-Pb age determinations on zircon of biotite granite form the Bagaladong Pb-Zn deposit样品号(LQLZK6-828) 元素含量(μg/g) Th/U 同位素比值 年龄(Ma) Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 01 287.80 384.40 0.70 0.02017 0.00038 0.13056 0.00932 0.04653 0.00344 129 2 125 8 33 161 02 226.10 424.20 0.50 0.01972 0.00035 0.14227 0.01447 0.05257 0.00572 126 2 135 13 309 248 03 686.50 1961.80 0.30 0.01965 0.00027 0.14187 0.00571 0.05198 0.00216 125 2 135 5 283 94 04 346.50 721.10 0.50 0.01920 0.0003 0.11689 0.00632 0.04373 0.00237 123 2 112 6 - - 05 325.90 806.00 0.40 0.02093 0.00032 0.14655 0.00741 0.05041 0.00261 134 2 139 7 213 116 06 605.30 640.90 0.90 0.02096 0.00030 0.13141 0.00713 0.04531 0.00261 134 2 125 6 - - 07 274.80 564.40 0.50 0.02036 0.00028 0.13611 0.00649 0.04823 0.00242 130 2 130 6 109 124 08 689.20 731.20 0.90 0.01987 0.00031 0.12872 0.00710 0.04670 0.00258 127 2. 123 6 35 126 09 1430.00 3073.80 0.50 0.02003 0.00023 0.14262 0.00489 0.05093 0.00172 128 2 135 4 239 78 10 384.10 779.20 0.50 0.02062 0.00032 0.15072 0.00798 0.05275 0.00288 132 2 143 7 317 126 11 427.60 1452.70 0.30 0.01968 0.00029 0.14429 0.00638 0.05263 0.00231 126 2 137 6 322 100 12 722.80 1301.20 0.60 0.01996 0.00024 0.13887 0.00646 0.04997 0.00231 127 2 132 6 195 107 13 835.20 3603.90 0.20 0.01945 0.00021 0.14361 0.00523 0.05315 0.00200 124 1 136 5 345 81 14 471.50 1534.00 0.30 0.01961 0.00023 0.13675 0.00535 0.05033 0.00201 125 2 130 5 209 88 注:“-”表示误差数据予以剔除。 表 2 巴嘎拉东铅锌矿床黑云母花岗岩锆石微量元素组成及锆石Ti温度计算结果Table 2. Trace elements compositions and results of crystallization temperture of zircons from the biotite granite in Bagaladong Pb-Zn deposit测定点号 含量(×10-6) 温度(℃) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Ti 01 <0.05 16.29 <0.05 1.45 3.47 0.19 22.70 8.60 110.87 43.40 190.88 40.65 367.17 64.80 1234.25 3.67 728.6 02 0.29 7.20 0.17 1.50 5.10 0.10 29.30 11.40 143.37 54.90 244.49 52.50 489.30 84.65 1583.56 3.45 723.1 03 0.07 20.40 0.10 2.19 6.96 0.19 52.39 24.10 330.88 133.74 618.50 135.65 1225.10 214.50 3889.87 0.60 593.9 04 <0.05 9.48 0.07 1.40 4.48 0.10 32.90 13.44 182.40 72.69 323.20 71.09 634.70 111.20 2077.46 - - 05 <0.05 7.69 0.07 1.38 4.20 0.06 29.76 13.50 179.69 72.79 331.60 71.50 639.10 115.80 2101.87 5.10 759.2 06 1.40 35.00 0.96 6.05 7.45 0.40 31.69 10.85 127.00 48.79 213.10 44.88 403.80 74.18 1419.66 5.90 773.3 07 7.00 25.50 2.88 15.40 7.37 0.60 33.20 10.97 132.18 51.85 226.35 46.98 429.90 78.30 1447.80 7.20 792.8 08 <0.05 28.50 0.10 2.95 5.49 0.20 36.90 13.50 168.40 63.80 281.10 58.40 512.96 91.47 1830.68 3.15 715.3 09 61.68 210.76 29.99 161.20 64.56 2.08 119.40 30.20 303.10 107.95 460.80 95.87 865.70 155.58 3099.90 107.89 1160.1 10 <0.05 7.85 0.10 2.45 5.90 0.07 37.59 15.57 200.47 79.10 355.55 76.20 687.59 124.96 2289.77 7.40 795.3 11 <0.05 7.10 0.05 1.47 6.35 0.09 49.30 21.67 296.10 120.78 560.29 121.30 1098.76 197.25 3508.10 0.90 619.1 12 <0.05 13.50 0.19 3.89 10.16 0.19 71.96 28.28 346.06 137.10 586.60 120.86 1049.20 189.35 3841.36 6.10 776.4 13 0.46 7.29 0.35 3.05 10.10 0.10 76.46 35.85 498.28 198.59 915.97 195.47 1748.37 312.50 5720.00 6.07 775.6 14 <0.05 6.57 0.09 1.00 5.48 <0.05 40.30 18.70 256.05 104.10 480.00 103.79 928.78 172.18 3029.50 1.20 639.1 注:球粒陨石标准化数据值据Sun等[17],“-”表示低于检出限数据。 由表 1可见,锆石U含量为226.1~1430 μg/g,平均值551.0 μg/g,Th含量为384.4~3603.9 μg/g,平均值1284.2 μg/g;Th/U值为0.2~0.9,平均值0.5,与岩浆成因锆石的Th/U值大于0.1的结果一致,亦表明所测试的锆石为岩浆锆石。利用Isoplot 4.12对锆石测年数据进行谐和曲线的投影及206Pb/238U加权平均年龄计算。在206Pb/238U-207Pb/235U谐和图上(图 4a),所有数据点均分布于谐和曲线上或其附近区域内,得到锆石206Pb/238U加权平均年龄为129.1±2.3 Ma(MSWD=1.5),表明巴矿区黑云母花岗岩岩体侵位于早白垩世中期。
3.2 锆石微量元素组成
由表 2可见,黑云母花岗岩锆石稀土元素总量变化范围较大,稀土元素总量σREEs=870.62~4002.93 μg/g,平均值1888.81 μg/g;轻稀土元素总量σLREEs=13.21~530.28 μg/g,平均值61.90 μg/g;重稀土元素总量σHREEs=849.16~3981.54 μg/g,平均值1826.91 μg/g;轻重稀土元素比值为0.01~0.25,平均值0.04。计算得到锆石稀土元素δCe值为1.20~701.77,平均值117.04,δEu值为0.01~0.12,平均值0.04。稀土元素配分模式图解显示(图 4b),黑云母花岗岩锆石的稀土配分模式与典型岩浆锆石配分模式一致,即具有轻稀土亏损、重稀土富集的左倾配分模式,明显的铈正异常和铕负异常特征[16, 18]。
4. 成岩时代与成岩温度讨论
4.1 成岩时代及其对燕山期成矿作用的限定意义
矿化与蚀变特征表明,巴嘎拉东铅锌矿床成矿作用与黑云母花岗岩关系密切,Pb-Zn矿化应发生于岩体侵位之后,矿床黑云母花岗岩的成岩年龄代表了矿床成矿时代的上限。因此,矿床成矿时代应略晚于129.1 Ma。区域上,早白垩世的酸性岩浆岩侵位事件亦有报道,主要表现为一系列淡色白云母或二云母花岗岩[1-3]、二云母花岗岩[4]、黑云母花岗岩[5];巴嘎拉东矿床东部的亚贵拉铅锌矿区石英斑岩成岩时代介于127.8~129.3 Ma之间[6];费光春等[7]和崔晓亮等[8]分别对洞中拉矿床花岗斑岩和石英斑岩进行了锆石U-Pb年代学测试,结果显示二者成岩时代分别为124.4 Ma和126.9 Ma。由此可见,冈底斯弧背断隆带东段的念青唐古拉地区早白垩世岩浆作用并非偶然事件,可能具有较广泛发育的特征。需说明的是,除巴嘎拉东黑云母花岗岩与成矿关系较为明显之外,其他该时期的侵入岩体是否形成矿化尚不明确。不少研究认为冈底斯弧背断隆带东段存在燕山期中、晚期与酸性侵入岩有关的Pb-Zn矿床[7, 9-13],然而有明确时代约束的矿床(点)基本未见报道。巴嘎拉东矿床成矿黑云母花岗岩成岩时代的厘定,揭示了冈底斯弧背断隆带东段的确存在燕山期成矿作用,这对于区域上寻找该时期成矿事件提供了理论依据。
4.2 锆石微量元素与成岩温度讨论
锆石部分微量元素是源岩性质和形成过程的提供重要的地球化学信息[19],锆石Th /U值区分岩浆、变质和热液锆石的标志[18],巴嘎拉东矿床黑云母花岗岩锆石Th/U值分布在0.6~7.4之间(表 1),与典型岩浆成因锆石(Th/U>0.1)[20]一致。前述锆石稀土配分曲线为轻稀土亏损、重稀土富集的左倾配分模式、Ce正异常和Eu负异常(图 4b),进一步证实为岩浆锆石,因此锆石结晶温度可以反映成岩温度。利用锆石微量元素Ti含量计算岩石形成温度近年来得到较为广泛的应用[21-22]。经过大量实验测试和热力学计算,锆石Ti温度计的计算公式最终被Ferry等[23]修订为log(10-6Tiin-zircon)=(5.711±0.072)-(4800±86)/T(K)-logαSiO2+logαTiO2。前人研究表明,体系中石英存在时αSiO2≈1;在典型岩浆温度范围内,硅酸盐熔体中αTiO2≈0.6[24]。巴嘎拉东黑云母花岗岩中存在大量石英(图 3),可取αSiO2值为1。依据公式计算得到锆石结晶温度列于表 2,其中点09温度为1160.1℃,超过锆石U-Pb体系的封闭温度(900~1100℃)[25],予以剔除。其余锆石结晶温度在593.9~795.3℃之间,且多在700℃以上,平均温度值为724.3℃。
5. 结论
巴嘎拉东铅锌矿区黑云母花岗岩与矿化关系密切,本文利用LA-ICP-MS技术对黑云母花岗岩的锆石微量元素进行研究,锆石微量元素稀土配分模式表现为与典型岩浆锆石相似的轻稀土亏损、重稀土富集的左倾配分模式;计算得到锆石δCe和δEu值分别为1.20~701.77、0.01~0.12,同样显示了岩浆锆石特征,利用锆石Ti元素温度计算出矿区黑云母花岗岩锆石结晶温度分布在593.9~795.3℃之间,平均温度为724.3℃,岩浆锆石的结晶温度在一定程度上反映了黑云母花岗岩的成岩温度。
此外,采用LA-ICP-MS锆石U-Pb年代学测试获得成矿黑云母花岗岩的年龄为129.1±2.3 Ma,与前人获得的念青唐古拉地区早白垩世岩浆侵位时代一致,推测可能形成于班公湖—怒江洋闭合后的碰撞造山挤压阶段。巴嘎拉东矿区Pb-Zn矿化发生于岩体侵位之后,因此,黑云母花岗岩成岩时代的厘定,限定了冈底斯弧背断隆带东段燕山期成矿作用晚于129.1±2.3 Ma,对于区域上寻找早白垩成矿作用奠定了理论基础。
致谢: 感谢国家地质实验测试中心袁继海对本论文的修改,同时感谢孙德忠教授级高级工程师所提供的对仪器参数选择的建议,特别是关于屏蔽圈作用方面的见解。 -
表 1 LA-ICP-MS仪器工作参数
Table 1 Operation parameters of LA-ICP-MS
激光剥蚀系统(LA) 电感耦合等离子体质谱(ICP-MS) 工作参数 设定条件 工作参数 设定条件 激光类型 ArF准分子 ICP-MS Element 2 波长 193 nm RF功率 1500 W 脉冲时间 20 ns 屏蔽圈 悬浮/接地 能量密度 ~3.0 J/cm2 冷却气(Ar)流量 15.00 L/min 激光频率 5 Hz 辅助气(Ar)流量 1.00 L/min 剥蚀池 Laurin Technic S-155 载气(Ar)流量 0.800 L/min 激光剥蚀直径 50 μm 停留时间 10 ms 剥蚀气体(He) 0.600 L/min 检测模式 计数与模拟 剥蚀时间 35 s 分辨率 低(~300) 表 2 StHs6/80-G及CGSG系列标准物质均匀性指数
Table 2 Homogeneity index of StHs6/80-G and CGSG reference materials
元素 H临界值 StHs6/80-G CGSG-1 CGSG-2 CGSG-4 CGSG-5 H μ(H) H μ(H) H μ(H) H μ(H) H μ(H) SiO2 1.260 1.260 0.204 1.175 0.031 0.877 0.036 0.942 0.033 1.029 0.191 Al2O3 1.260 1.076 0.175 1.039 0.008 1.079 0.014 1.091 0.020 1.049 0.168 TFeO 1.260 1.056 0.171 1.136 0.018 0.812 0.011 0.744 0.016 0.825 0.184 TiO2 1.260 0.911 0.148 0.823 0.007 1.278 0.003 0.784 0.004 0.985 0.133 CaO 1.260 1.214 0.197 0.782 0.016 0.926 0.013 0.956 0.010 1.108 0.127 MgO 1.260 0.995 0.161 1.095 0.010 1.046 0.022 1.101 0.009 0.951 0.178 K2O 1.260 0.863 0.140 1.059 0.004 1.126 0.001 1.005 0.007 1.045 0.172 Na2O 1.260 1.084 0.176 1.130 0.006 1.106 0.006 1.010 0.009 1.014 0.183 表 3 CGSG系列标准物质主量微量元素EMPA和LA-ICP-MS分析结果
Table 3 Major and trace element concentrations of CGSG reference materials determined with EMPA and LA-ICP-MS
元素 CGSG-1 CGSG-2 CGSG-4 CGSG-5 EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) SiO2 52.7±0.37 - - 54.4±0.29 - - 63.9±0.33 - - 57.3±0.34 - - Al2O3 17.3±0.19 17.5±0.1 17.4±0.2 20.7±0.21 21.3±0.2 21.1±0.4 14.7±0.18 14.9±0.2 14.9±0.1 15.5±0.18 16.5±0.9 16.1±0.1 TFeO 7.59±0.20 7.77±0.15 7.65±0.11 6.67±0.14 6.92±0.1 6.68±0.08 4.48±0.104 4.75±0.1 4.57±0.07 4.3±0.113 4.48±0.17 4.4±0.05 TiO2 2.18±0.055 2.23±0.03 2.18±0.02 0.574±0.053 0.606±0.011 0.592±0.006 0.6±0.033 0.628±0.014 0.612±0.006 0.482±0.039 0.531±0.028 0.51±0.006 CaO 5.71±0.10 5.75±0.22 6.14±0.1 1.63±0.067 1.83±0.19 2.11±0.06 6.87±0.13 6.43±0.23 6.87±0.1 4.59±0.13 4.6±0.46 4.89±0.06 MgO 3.86±0.106 3.99±0.03 3.97±0.06 0.817±0.051 0.855±0.011 0.852±0.009 2.08±0.079 2.17±0.02 2.16±0.02 1.47±0.06 1.59±0.06 1.56±0.02 K2O 3.94±0.107 3.97±0.06 3.92±0.06 7.03±0.15 7.03±0.08 6.87±0.12 2.61±0.084 2.49±0.11 2.57±0.03 1.92±0.076 1.84±0.06 1.9±0.03 Na2O 3.75±0.143 3.6±0.04 3.61±0.07 6.68±0.18 6.46±0.05 6.35±0.08 2.81±0.11 2.69±0.02 2.66±0.04 11.35±0.21 11.2±0.1 11±0.1 MnO 0.123±0.017 0.13±0.002 0.128±0.002 0.133±0.027 0.135±0.002 0.133±0.002 0.105±0.025 0.117±0.002 0.113±0.001 0.091±0.022 0.096±0.002 0.092±0.001 P2O5 1.15±0.109 1.23±0.04 1.2±0.02 0.094±0.045 0.1±0.008 0.101±0.003 0.264±0.049 0.283±0.016 0.267±0.004 0.194±0.053 0.225±0.028 0.222±0.004 Li - 23.1±5.2 23.6±1.7 - 425±15 437±9 - 1144±23 1143±21 - 2048±83 2001±45 Be - - 3.56±0.6 - 20.2±6.5 16.1±1.3 - - 2.82±0.58 - - 2.11±0.63 B - 40.7±8.6 40.8±2.8 - 660±28 685±12 - 1831±73 1958±35 - 4747±641 5221±365 Sc - 11.2±1.5 11.5±0.4 - 5.08±1.08 4.94±0.36 - 10±1.1 9.89±0.21 - 8.66±1.17 8.18±0.43 V - 134±3 140±2 - 193±6 200±3 - 81±2.7 84.5±1.2 - 95.6±3.8 98±1.5 Cr - 45.8±5.7 42.1±0.9 - - 7.7±1.06 - 92.8±5.7 86.4±2.7 - 36.6±5.6 35.4±2.2 Co - 25±1.6 23.6±0.7 - 6.04±0.55 5.72±0.17 - 12.8±0.7 12±0.3 - 12.4±1.6 12±0.5 Ni - 38.1±5.3 35.7±1.7 - - - - 27.8±6.9 27.5±3.1 - 17.2±6.4 15.5±2.7 Cu - 18±1.7 18.2±0.9 - 19.8±1.7 20.7±0.8 - 39.5±2.5 41±1.1 - 50.9±3.4 51.1±1.6 Zn - 170±18 180±5 - 145±20 142±4 - 144±14 141±3 - - 86.5±2.6 Ga - 26.7±3.4 30.9±1.3 - 37.4±3.2 41.3±1 - 17.3±1.7 18.3±0.6 - 19.1±2 19±0.4 Ge - 3.83±4.36 4.49±0.86 - - 2.45±1.18 - - 1.48±1.19 - - - As - 5.02±2.18 4.89±0.31 - 7.08±3.25 8±0.47 - 3.51±1.17 3.5±0.28 - - 3.18±0.44 Rb - 104±3 108±2 - 124±4 129±2 - 86.1±2.1 88.3±0.9 - 38.6±2.2 38.8±1.5 Sr - 1316±21 1287±23 - 1200±13 1172±21 - 384±8 380±4 - 826±66 788±10 Y - 28.1±1.2 26.2±0.5 - 27.8±1.4 26.6±0.9 - 23.9±1.2 23.1±0.3 - 10.3±0.8 9.71±0.3 Zr - 534±16 516±13 - 1373±13 1318±34 - 257±5 250±2 - 188±14 176±4 Nb - 57.6±1.8 56.2±1.1 - 79.6±2 76.6±1 - 16±0.9 15.3±0.3 - 11.2±0.8 10.5±0.2 Mo - 3.14±0.83 3.84±0.23 - - 1.24±0.15 - 2.18±0.62 2.62±0.13 - 1.02±0.31 1.12±0.09 Cd - - 0.444±0.083 - - 0.497±0.096 - - 0.463±0.079 - - - In - 0.219±0.1 0.185±0.038 - 0.39±0.121 0.358±0.035 - 0.229±0.08 0.198±0.065 - - 0.109±0.04 Sn - 7.78±1.23 7.12±0.34 - 12±0.9 10.9±0.6 - 11.8±1.4 10.6±0.7 - 3.32±1.03 2.88±0.31 Sb - - 1.06±0.12 - 1.69±0.75 1.64±0.14 - 1.74±0.66 1.77±0.13 - - 1.02±0.17 Cs - 0.88±0.125 0.915±0.052 - 1.84±0.24 1.92±0.08 - 4.55±0.32 4.68±0.12 - 1.27±0.4 1.32±0.18 Ba - 2158±28 2122±45 - 395±7 384±7 - 732±18 700±9 - 953±79 877±10 La - 165±4 159±3 - 158±3 151±3 - 40.8±1 39.1±0.4 - 31.7±1.6 29.8±0.6 Ce - 343±5 333±6 - 258±3 248±4 - 74.3±2.2 72±0.8 - 56.1±3.4 52.9±0.6 Pr - 34.9±0.8 34.7±0.7 - 22.9±0.8 22.3±0.4 - 8±0.45 7.96±0.12 - 5.93±0.81 5.59±0.12 Nd - 131±5 131±3 - 71.7±3.6 70.1±2.4 - 29.4±2.2 28.9±1 - 21.7±2.3 21.1±0.6 Sm - 18.5±2 17.4±0.4 - 9.99±1.08 9.32±0.32 - 5.3±0.71 5.06±0.26 - 3.96±0.7 3.37±0.41 Eu - 4.11±0.45 3.94±0.16 - 2.49±0.26 2.37±0.19 - 1.24±0.26 1.16±0.08 - 1.12±0.29 1.02±0.08 Gd - 11±1.7 11.1±0.4 - 6.5±1.32 6.33±0.42 - 4.57±0.82 4.3±0.27 - 2.85±0.71 2.58±0.17 Tb - 1.2±0.17 1.18±0.07 - 0.875±0.142 0.798±0.05 - 0.658±0.105 0.625±0.048 - 0.324±0.112 0.315±0.027 Dy - 6.06±0.54 5.88±0.27 - 4.71±0.6 4.68±0.23 - 3.73±0.82 4.02±0.22 - 1.73±0.37 1.84±0.21 Ho - 1±0.173 0.923±0.042 - 0.918±0.134 0.832±0.07 - 0.853±0.116 0.775±0.054 - 0.335±0.074 0.32±0.028 Er - 2.38±0.44 2.2±0.12 - 2.66±0.47 2.32±0.13 - 2.32±0.29 2.17±0.13 - 1.07±0.4 0.805±0.086 Tm - 0.35±0.062 0.272±0.023 - 0.424±0.104 0.344±0.033 - 0.386±0.088 0.322±0.026 - 0.154±0.056 0.113±0.016 Yb - 2.02±0.86 1.69±0.18 - 2.78±0.55 2.38±0.26 - 2.35±0.73 2.1±0.17 - 0.99±0.385 0.76±0.156 Lu - 0.245±0.085 0.246±0.035 - 0.396±0.09 0.382±0.032 - 0.353±0.087 0.338±0.023 - - 0.116±0.022 Hf - 11.2±1.2 11±0.5 - 34±2 33.4±1.2 - 6.56±0.7 6.5±0.37 - 4.85±1.04 4.44±0.17 Ta - 2.52±0.22 2.57±0.08 - 2.03±0.18 2±0.09 - 1±0.14 0.944±0.06 - 0.46±0.11 0.419±0.033 W - 1.52±0.41 1.74±0.22 - 1.37±0.39 1.55±0.14 - 2.17±0.47 2.34±0.19 - - 0.626±0.091 Pt - - 0.151±0.06 - 0.531±0.26 0.572±0.098 - - 0.465±0.177 - - - Tl - 0.111±0.052 0.108±0.026 - 0.213±0.089 0.177±0.048 - 0.282±0.112 0.246±0.042 - - - Pb - 29.1±1.2 28.9±0.7 - 138±4 133±2 - 47.3±1.5 44.9±1.3 - 21.7±9.3 22±9.5 Bi - 1.21±0.18 1.21±0.06 - 1.25±0.18 1.29±0.11 - 0.317±0.07 0.284±0.037 - - 0.241±0.03 Th - 20.6±0.7 19.7±0.6 - 74.5±1.7 70±1.8 - 12.5±0.4 11.7±0.3 - 7.8±0.56 6.99±0.25 U - 3.29±0.15 3.56±0.17 - 13.8±0.7 14.6±0.4 - 2.53±0.26 2.68±0.12 - 1.71±0.23 1.77±0.09 注:主量元素含量的单位以%给出,微量元素含量的单位以μg/g给出,”±”为2倍重复标准偏差,”-”表示低于方法检出限。实验a、b分别代表在屏蔽圈悬浮和接地两个模式下进行的。 -
Liu Y S,Hu Z C,Li M,et al.Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples[J].Chinese Science Bulletin,2013,58(32):3863-3878. doi: 10.1007/s11434-013-5901-4
Russo R E,Mao X,Gonzalez J J,et al.Laser Ablation in Analytical Chemistry[J].Analytical Chemistry,2013,85(13):6162-6177. doi: 10.1021/ac4005327
Liu Y S,Hu Z C,Gao S,et al.In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
Ubide T,McKenna C A,Chew D M,et al.High-resolution LA-ICP-MS Trace Element Mapping of Igneous Minerals:In Search of Magma Histories[J].Chemical Geology,2015,409:157-168. doi: 10.1016/j.chemgeo.2015.05.020
袁继海,詹秀春,范晨子,等.玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8 Yuan J H,Zhan X C,Fan C Z,et al.Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration[J].Chinese Journal of Analytical Chemistry,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8
Jackson S E,Pearson N J,Griffin W L,et al.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology[J].Chemical Geology,2004,211(1):47-69.
Yuan H L,Gao S,Dai M N,et al.Simultaneous Determinations of U-Pb Age,Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-collector ICP-MS[J].Chemical Geology,2008,247(1-2):100-118. doi: 10.1016/j.chemgeo.2007.10.003
Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
Paton C,Woodhead J D,Hellstrom J C,et al.Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction[J].Geochemistry,Geophysics,Geosystems,2010,11(3):1-36.
Günther D,Audétat A,Frischknecht R,et al.Quantitative Analysis of Major,Minor and Trace Elements in Fluid Inclusions Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,1998,13(4):263-270. doi: 10.1039/A707372K
Wálle M,Heinrich C A.Fluid Inclusions Measurements by Laser Ablation Sector-field ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):1052-1057. doi: 10.1039/c4ja00010b
Halter W E,Pettke T,Heinrich C A,et al.Major to Trace Element Analysis of Melt Inclusions by Laser-Ablation ICP-MS:Methods of Quantification[J].Chemical Geology,2002,183(1-4):63-86. doi: 10.1016/S0009-2541(01)00372-2
Garbe-Schonberg D,Müller S.Nano-Particulate Pressed Powder Tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):990-1000. doi: 10.1039/c4ja00007b
吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1 Wu S T,Wang Y P,Xu C X.Research Progress on Reference Mterials for in situ Elemental Analysis by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
Jochum K P,Enzweiler J.Treatise on Geochemistry (Second Edition):Reference Materials in Geochemical and Environmental Research[M].Oxford:Elsevier Press,2014:43-70.
Jochum K P,Weis U,Stoll B,et al.Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines[J].Geostandards and Geoanalytical Research,2011,35(4):397-429. doi: 10.1111/ggr.2011.35.issue-4
Jochum K P,Stoll B,Herwig K,et al.MPI-DING Reference Glasses for in Situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios[J].Geochemistry,Geophysics,Geosystems,2006,7(2):1-44.
Jochum K P,Willbold M,Raczek I,et al.Chemical Characterisation of the USGS Reference Glasses GSA-1G,GSC-1G,GSD-1G,GSE-1G,BCR-2G,BHVO-2G and BIR-1G Using EPMA,ID-TIMS,ID-ICP-MS and LA-ICP-MS[J].Geostandards and Geoanalytical Research,2005,29(3):285-302. doi: 10.1111/ggr.2005.29.issue-3
Hu M Y,Fan X T,Stoll B,et al.Preliminary Charact-erisation of New Reference Materials for Microanalysis:Chinese Geological Standard Glasses CGSG-1,CGSG-2,CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research,2011,35(2):235-251. doi: 10.1111/ggr.2011.35.issue-2
Jochum K P,Stoll B,Weis U,et al.Non-Matrix-Matched Calibration for the Multi-element Analysis of Geological and Environmental Samples Using 200 nm Femtosecond LA-ICP-MS:A Comparison with Nanosecond Lasers[J].Geostandards and Geoanalytical Research,2014,38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3
Denton J,Murrell M,Goldstein S,et al.Evaluation of New Geological Reference Materials for Uranium-Series Measurements:Chinese Geological Standard Glasses (CGSG) and Macusanite Obsidian[J].Analytical Chemistry,2013,85(20):9975-9981. doi: 10.1021/ac4017117
Jochum K P,Dingwell D B,Rocholl A,et al.The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis[J].Geostandards Newsletter,2000,24(1):87-133. doi: 10.1111/ggr.2000.24.issue-1
Klemme S,Prowatke S,Münker C,et al.Synthesis and Preliminary Characterisation of New Silicate,Phosphate and Titanite Reference Glasses[J].Geostandards and Geoanalytical Research,2008,32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x
Yang Q C,Jochum K P,Stoll B,et al.BAM-S005 Type A and B:New Silicate Reference Glasses for Microanalysis[J].Geostandards and Geoanalytical Research,2012,36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3
Wilson S A,Ridley W I,Koenig A E.Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique[J].Journal of Analytical Atomic Spectrometry,2002,17(4):406-409. doi: 10.1039/B108787H
Harries D.Homogeneity Testing of Microanalytical Reference Materials by Electron Probe Microanalysis (EPMA)[J].Chemie der Erde-Geochemistry,2014,74(3):375-384. doi: 10.1016/j.chemer.2014.01.001
Armstrong J T.Citzaf-A Package of Correction Programs for the Quantitative Electron Microbeam X-Ray-Analysis of Thick Polished Materials,Thin-films,and Particles[J].Microbeam Analysis,1995,4(3):177-200.
Hu Z C,Liu Y S,Chen L,et al.Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution[J].Journal of Analytical Atomic Spectrometry,2011,26(2):425-430. doi: 10.1039/C0JA00145G
Li Z,Hu Z,Liu Y,et al.Accurate Determination of Elements in Silicate Glass by Nanosecond and Femtosecond Laser Ablation ICP-MS at High Spatial Resolution[J].Chemical Geology,2015,400:11-23. doi: 10.1016/j.chemgeo.2015.02.004
Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].Canadian Mineralogist,1995,33:303-312.
Manka A J G,Masonb P R D.A Critical Assessment of Laser Ablation ICP-MS as an Analytical Tool for Depth Analysis in Silica-based Glass Samples[J].Journal of Analytical Atomic Spectrometry,1999,14(8):1143-1153. doi: 10.1039/a903304a
吴石头,王亚平,许春雪,等.193 nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X Wu S T,Wang Y P,Xu C X,et al.Elemental Fractionation Studies of 193 nm ArF Excimer Laser Ablation System at High Spatial Resolution Mode[J].Chinese Journal of Analytical Chemistry,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X
van der Veen A M,Linsinger T P,Pauwels J.Uncertainty Calculations in the Certification of Reference Materials.2.Homogeneity Study[J].Accreditation and Quality Assurance,2001,6(1):26-30. doi: 10.1007/s007690000238
Jochum K P,Scholz D,Stoll B,et al.Accurate Trace Element Analysis of Speleothems and Biogenic Calcium Carbonates by LA-ICP-MS[J].Chemical Geology,2012,318:31-44.
Gao S,Liu X M,Yuan H L,et al.Determination of Forty-two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards Newsletter,2002,26(2):181-196. doi: 10.1111/ggr.2002.26.issue-2
袁继海,詹秀春,孙冬阳,等.激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J].分析化学,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X Yuan J H,Zhan X C,Sun D Y,et al.Investigation on Matrix Effects in Silicate Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X
Tong X,Liu Y,Hu Z,et al.Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS[J].Geostandards and Geoanalytical Research,2015,40(1):85-99.
刘勇胜,胡圣虹,柳小明,等.高级变质岩中Zr,Hf,Nb,Ta的ICP-MS准确分析[J].地球科学——中国地质大学学报,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm Liu Y S,Hu S H,Liu X M, et al.Accurate Analysis of Zr,Hf,Nb and Ta in High-grand Metamorphic Rocks with ICP-MS[J].Earth Science-Journal of China University of Geosciences,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm
-
期刊类型引用(3)
1. 苏萃,任敏巧,郑萃,姚雪容,贾雪飞,侯莉萍,张韬毅,唐毓婧. 线性低密度聚乙烯流延膜取向与阻隔性能关系研究. 高分子学报. 2021(07): 775-786 . 百度学术
2. 严海军,罗仙平,朱贤文,翁存建,张文谱,冯博. 硫化矿浮选中滑石抑制剂的研究进展. 矿产保护与利用. 2020(01): 138-144 . 百度学术
3. 卢前明,张瑞林,王震,韩红强. 煅烧温度及冷却条件对造纸污泥灰火山灰活性的影响. 环境工程学报. 2018(09): 2635-2641 . 百度学术
其他类型引用(6)