Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration
-
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)常用于磁铁矿原位微量元素分析,按照校正策略不同,主要分为内标法和无内标法。内标法需要用电子探针(EMPA)预先测定磁铁矿中内标元素Fe的含量,过程较繁琐,且待测元素含量会受到内标元素含量测定的影响。本文采用铁含量较高的玄武质玻璃BCR-2G、BIR-1G、BHVO-2G和GSE-1G作为外标,避免了内标元素含量的测定,建立了无内标-多外标校正LA-ICP-MS测定磁铁矿微量元素组成的分析方法。利用该方法测定了科马提岩玻璃GOR-128g和自然岩浆磁铁矿BC 28的微量元素组成以评估方法的可靠性。结果表明,科马提岩玻璃的测定结果与推荐值及前人内标法的测定值一致,多数元素的相对标准偏差RSD<5%;自然岩浆磁铁矿的测定结果与推荐值相比,多数元素的RSD<7%,低于前人内标法的RSD(<15%)。由此说明无内标-多外标法可以实现富铁硅酸岩或磁铁矿微量元素含量的准确校正,克服了基体效应的影响。因此,无内标-多外标法是一种原位测定磁铁矿微量元素含量的快速、准确方法,具有一定的应用潜力。
-
关键词:
- 磁铁矿 /
- 微量元素 /
- 无内标-多外标 /
- 激光剥蚀等离子体质谱法 /
- 基体效应
Abstract: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is commonly used to analyze trace elements in magnetite, which can be divided into internal standard (IS) and no internal standard (NIS) methods according to calibration techniques. IS method involves a relatively complex process for the determination of Fe content by Electron Microprobe. Moreover, elemental content are affected by the analytical accuracy of IS elemental iron. An analytical method for determination of trace elements in magnetite by LA-ICP-MS using multiple external standards (basaltic glasses BCR-2g, BIR-1g, BHVO-2g, GSE-1G) without an IS element has been developed. The proposed method avoids the determination of the IS element. Trace element compositions of komatitic glass (GOR-128g) and natural magmatic magnetite (BC 28) were determined by the proposed method and used to evaluate the reliability of the method. Results show that the analytical values of komatitic glass are consistent with the certified values and reported values by the existing IS method. The relative standard deviation (RSD) of most elements is smaller than 5%. Most elements of natural magmatic magnetite have RSD better than 7% between the analytical values and the certified values, and RSD better than 15% between the analytical values and the reported values by the IS method. This indicates that multiple external standards without an IS method can determine accurate calibration of trace element concentrations of iron-rich silicates and magnetite, overcoming the matrix effects. Therefore, multiple external standards without an IS method is a fast and precise method for determination of trace elements in magnetite, which has a great application potential. -
煤炭在燃烧过程中,某些微量元素(如汞、氟等),或呈气态,或吸附在烟气的细小颗粒物中呈气溶胶态,通过烟气污染控制设施,释放到大气环境中,是大气污染的主要污染来源[1, 2, 3];另一部分微量元素(如砷、镉等)富集在煤灰中,当煤灰以废弃物的形式接触土壤或水体时,通过迁移方式进入食物链。煤炭中有害微量元素对环境的危害越来越受到各国的关注[4],针对煤炭中微量元素的分布特征开展了广泛的研究,研究内容包括代表值估计和赋存形态分析。代表值估计属基本统计学参数描述,通常使用方法有正态统计描述和稳健统计描述,稳健统计描述能更好地克服异常值对结果的影响[5]。微量元素赋存状态的信息是煤炭成因和洁净煤技术研究的基础资料,是煤质评价的重要内容,其分析方法分为直接方法和间接方法。直接方法主要是指各种显微探针技术(电子、离子和X射线探针)和谱学分析技术(如X射线吸收精细结构谱法);间接方法包括数理统计方法、浮沉试验方法和化学方法(如逐级化学提取试验方法)[6]。国外多位学者研究了本国煤炭中微量元素的分布规律、赋存形态,探讨了元素异常富集的成因机制[7, 8, 9, 10, 11, 12]。我国学者运用数理统计方法对我国各地区煤炭微量元素的分布特征进行了研究[13, 14, 15, 16, 17, 18, 19, 20]。
我国已从煤炭净出口国向煤炭净进口国转变,进口煤炭成为缓解东南沿海地区供需矛盾的一个重要组成部分[21]。印度尼西亚煤炭工业发达,该国煤炭低灰分、低硫分,开采和海运成本低[22],是我国进口最多的煤炭品种。已有学者对印度尼西亚煤炭矿区的地质特征以及煤炭品质进行了相关研究[23, 24, 25],作者在前期的研究工作中[26],应用直接测汞仪测定了上海口岸123批进口煤炭的总汞含量,对汞在各国煤炭中赋存状态进行了探讨,其中涉及进口印度尼西亚煤炭。本文是前期工作的一个延续,应用电感耦合等离子体质谱(ICP-MS)、原子荧光光谱(AFS)、直接测汞仪等方法测试了上海口岸31批进口印度尼西亚煤炭中12种微量元素(Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Ba、Pb、As、Hg)的含量,并与中国煤、世界煤、相关学者报道的印度尼西亚煤炭中微量元素含量进行比较,依据我国煤炭行业相关微量元素分级标准进行评价,同时结合相关分析、聚类分析、因子分析等多元统计方法研究了进口印度尼西亚煤炭微量元素的赋存状态。
1. 样品采集和分析
1.1 样品采集和制备
印度尼西亚为上海口岸最大的煤炭输出国。本文随机抽取2011年11月至2012年4月期间上海口岸进口印度尼西亚煤炭样品31批,主要为烟煤,供上海地区燃煤电厂发电使用。根据卸货码头现场条件,分别采用国家标准方法GB 475—2008《商品煤样人工采取方法》或GB/T 19494.1—2004《煤炭机械化采样第1部分:采样方法》进行取样,根据GB 474—2008《煤样的制备方法》进行煤样的制备。
1.2 样品分析项目和测定方法
分析项目包括Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Ba、Pb、As、Hg、全硫、灰分。其中,Hg采用DMA80直接测汞仪(Milestone公司)[26],As依据SN/T 3521—2007《进口煤炭中砷、汞含量的同时测定氢化物发生-原子荧光光谱法》,全硫依据GB/T 214—2007《煤中全硫的测定方法》艾氏卡法,灰分依据GB/T 212—2008《煤的工业分析方法》快速灰化法进行测定,其余元素采用X-Series Ⅱ电感耦合等离子体质谱仪(美国Thermo公司)进行测定[27]。
2. 进口印度尼西亚煤炭微量元素含量
煤炭中微量元素的富集系数是指煤炭中微量元素的算术平均值与地壳的平均含量之比,是评价煤炭中微量元素的富集程度的重要参数,能表征煤炭中微量元素的污染状况。与地壳的平均含量相比,31批上海口岸进口印度尼西亚煤炭中,As和Hg的平均富集系数大于1,其他元素的平均富集系数均小于1。
依据我国煤炭行业标准MT/T 803—1999《煤中砷含量分级》、MT/T 963—2005《煤中汞含量分级》、MT/T 965—2005《煤中铬含量分级》、MT/T 1029—2006《煤中镉含量分级》、MT/T 964—2005《煤中铅含量分级》,抽检的31批样品中,存在6批二级含砷煤、1批三级含砷煤、5批低汞煤、1批中汞煤、2批高汞煤、1批中铬煤、2批高铬煤、2批中镉煤,其余属于一级含砷煤、特低汞煤、低铬煤、低镉煤、低铅煤。
表 1列举了本次调研的31批进口印度尼西亚煤炭与Belkin等[28]报道的8批印尼煤炭以及中国煤、世界煤微量元素含量的比较情况。31批进口印度尼西亚煤炭中,Cr、Ni含量范围分别为0.7~137.1 mg/kg、0.9~253.6 mg/kg,平均值分别为14.1 mg/kg、18.3 mg/kg,皆高于Belkin等报道的8批印尼煤炭,造成差异的主要原因在于,本次检验的煤炭中存在个别Cr、Ni含量高的样品。印尼煤炭中Be、Cu、Mo、Cd、Sn、Pb含量平均值(mg/kg)分别为0.47、5.4、0.77、0.07、0.47、3.4,均低于中国煤和世界煤的平均水平,体现出印尼煤炭低灰分的品质特征。
表 1 进口印尼煤与中国煤、世界煤微量元素的比较Table 1. Comparisons of trace elements concentrations元素 本研究印尼煤样品 印尼煤a 中国煤b 世界煤 含量范围
(mg/kg)平均值
(mg/kg)含量范围
(mg/kg)平均值
(mg/kg)含量范围
(mg/kg)平均值
(mg/kg)含量范围c
(mg/kg)平均值d
(mg/kg)As 0.1~19.0 3.7 0.4~11 3.6 0.4~10 5 0.5~80 5 Hg 0.01~0.92 0.12 0.02~0.19 0.10 0.01~1.0 0.15 0.02~1.0 0.10 Be 0.15~1.28 0.47 0.13~1.5 0.54 0.1~6 2 0.1~15 1.5 e Cr 0.7~137.1 14.1 1.1~24.9 7.4 2~50 12 0.5~60 10 Co 1.3-14.2 3.6 1.2~9.2 3.6 1~20 7 0.5~30 5 Ni 0.9~253.6 18.3 0.8~16 7.3 2~65 14 0.5~50 15 Cu 0.5~25.3 5.4 0.8~38 8.7 1~50 13 0.5~50 15 Mo 0.11~1.78 0.77 0.21~3.35 1.1 1~15 4 0.1~10 5 Cd 0.01~0.26 0.07 0.01~0.04 0.02 0.01~3 0.2 0.1~3 0.3 Sn 0.1~1.8 0.47 0.20~1.31 0.56 0.4~5 2 1~10 2 Ba 3.0~224.3 63.5 34.2~165 78.3 13~400 82 20~1000 120 Pb 0.9~11.2 3.4 0.4~10 3.1 10~47 13 2~80 25 注: a来自Belkin等[28],b来自赵继尧等[29],c来自Swaine等[30],d来自Valkovic[31],e来自Finkelman[32] 3. 进口印度尼西亚煤炭微量元素赋存形态
3.1 相关分析
煤中元素与灰分的相关性在一定程度上可揭示该元素的有机/无机亲和性,是一种间接分析方法,可判定元素的赋存状态,为元素来源提供参考信息[33]。微量元素与灰分正相关,推断其无机亲和性,赋存于黏土矿物或硫化矿物中;与灰分负相关,推断其有机亲和性,可能赋存形态为有机态,属于煤炭自生;与灰分不相关,则说明该元素赋存形态比较复杂[34]。微量元素间的相关分析,可以为微量元素间的伴生关系提供参考依据。
表 2列举了上海口岸进口印尼煤中微量元素、全硫、灰分含量的相关系数矩阵。从相关系数分布看出,除Hg和Ba外,其余元素与灰分都存在显著相关,其中,Be、Co、Cu、Sn与灰分显著相关(相关系数R大于0.8),说明进口印度尼西亚煤炭中,Hg和Ba可能是以独立的矿物组成存在于煤炭中,其余元素具有无机亲和性。由于煤中硫来源的多样性和复杂性,以及后期低温热液形成硫的多期次性,不同来源、不同地质历史时期形成的硫化物中所含的潜在毒害微量元素相差甚大,造成煤中硫与其中潜在毒害微量元素相关性不明显。除Hg和Ba外,其余微量元素间都存在显著的相关关系,其中As-Cr、As-Ni、As-Cu、Be-Co、Be-Cd、Be-Sn、Cr-Co、Cr-Cu、Cr-Ni、Co-Ni、Co-Cu、Co-Sn、Ni-Cu、Cd-Sn、Sn-Pb存在强相关关系,说明以上元素存在伴生关系。
表 2 进口印尼煤微量元素、全硫、灰分含量的相关系数矩阵Table 2. Correlation matrix of trace elements, total sulfur, ash in imported Indonesia coals项目 全硫 灰分 As Hg Be Cr Co Ni Cu Mo Cd Sn Ba Pb 全硫 1 灰分 -0.131 1 As 0.007 0.632 1 Hg 0.237 0.118 0.171 1 Be -0.185 0.879 0.582 0.142 1 Cr 0.127 0.761 0.822 0.128 0.613 1 Co -0.065 0.848 0.740 0.118 0.836 0.876 1 Ni 0.117 0.745 0.877 0.137 0.650 0.968 0.876 1 Cu 0.084 0.846 0.802 0.201 0.773 0.887 0.900 0.897 1 Mo 0.085 0.469 0.573 -0.068 0.459 0.509 0.479 0.547 0.478 1 Cd -0.181 0.760 0.547 0.014 0.851 0.661 0.775 0.670 0.683 0.486 1 Sn -0.189 0.843 0.566 0.020 0.821 0.695 0.808 0.678 0.783 0.535 0.858 1 Ba -0.205 0.012 0.097 -0.012 -0.093 0.084 0.128 0.042 0.126 -0.284 -0.103 0.028 1 Pb -0.218 0.723 0.645 0.106 0.702 0.755 0.742 0.686 0.720 0.364 0.785 0.808 0.179 1 3.2 聚类分析
聚类是将研究对象分为相对同质的群组的统计分析技术,根据分类对象不同,聚类分析可分为Q型(样本)和R型(变量)两大类。利用煤中微量元素间的R型聚类分析,可确定微量元素之间的相关性,进而推断其相互依存关系,判断其赋存状态。对31批进口印度尼西亚煤炭进行R型系统聚类,考察12项微量元素含量、全硫含量、灰分含量,可聚为3类。聚类1:As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb、灰分,表明以上元素与灰分存在依存关系,以上项目归纳为黏土矿物吸附类;聚类2:Hg、全硫,表明Hg与全硫存在依存关系,由于煤炭中硫主要以硫铁矿形式存在,以上项目归纳为硫铁矿类;聚类3:Ba,表明Ba以区别于黏土矿物、硫铁矿以外的矿物形式存在,结合相关文献资料,可将该项目归纳为碳酸盐矿物类。聚类分析结果提供了煤炭微量元素间不同的赋存状态,能为进口煤炭的洁净化处理提供参考依据。
3.3 因子分析
与相关分析、聚类分析相比,因子分析在分析煤中微量元素分布及影响因素方面很有优势。本文利用SPSS19.0软件对标准化的数据进行因子分析,为简化因子分析结果,对结果作出更合理的解释,采用最大方差法对初始因子进行旋转。主成分信息表明,前3个主成分的特征值大于1,累积贡献率为81.6%,因此前3个潜在因子能解释整体情况。初始因子矩阵和旋转后的因子矩阵表明,初始因子矩阵很难对各因子作出合理的解释,经3次最大方差法旋转后的因子矩阵中,第1主因子F1中As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb有较高的因子载荷;第2主因子F2中Hg有较高的因子载荷;第3主因子F3中只有Ba一种元素有较高的因子载荷。因子分析和聚类分析结果非常一致,这也说明了聚类分析结果对元素赋存状态推断的合理性。
4. 进口印度尼西亚煤炭的统计学分类
由于成煤年代、地质特征差异,煤炭中微量元素含量有一定“指纹”效应,能在一定程度上指示产地属性。在缺乏足够信息的情况下,利用煤中微量元素间的Q型聚类分析,可实现不同煤炭样品间的分类分组,进而对进口煤炭的产地来源进行鉴别。对31批进口印度尼西亚煤炭进行Q型系统聚类,结果表明,抽检的印度尼西亚煤炭可分为3类:第1类包括27批,占比87.1%;第2类包括2批,与第1类相比,体现在高As、Be、Cr、Co、Ni、Cu、Cd、Mo,Sn、Pb含量;第3类包括2批,与第1类相比,体现在高Ba含量。以上分类,可能代表 3种不同的煤炭来源。
5. 结论
本文运用多种分析测试技术和数理统计方法研究了上海口岸进口印度尼西亚煤炭中12种微量元素的分布特征及其赋存形态,实现了不同煤炭样品间的分类。结果表明,进口印尼煤炭中含有高汞煤、三级含砷煤,As、Hg的迁移风险值得关注;Be、Cu、Mo、Cd、Sn、Pb含量均低于中国煤和世界煤炭的平均水平,体现出印尼煤炭低灰分的品质特征。12种微量元素和相关项目(灰分和全硫)划分为3类:第一类归纳为黏土矿物吸附类,包括As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb、灰分;第二类归纳为硫铁矿类,包括Hg、全硫;第三类归纳为碳酸盐矿物类,包括Ba。表明了被抽检的印度尼西亚煤炭可能代表 3种不同的煤炭来源。
掌握进口印尼煤炭中微量元素的分布特征,能为煤炭的洁净化使用以及监管政策措施制定提供技术支撑。本研究所采用的数理统计方法,主要是基于煤炭微量元素间固有的依存关系,一定程度上反映了成煤地质环境、煤的变质程度等信息,可为研究其他进口煤炭微量元素的分布特征提供借鉴。然而,受条件限制,本次抽查的样品数量不多,样品产地信息不明确,一定程度上对调研结果会产生影响。
-
表 1 磁铁矿微量元素原位分析标样类型及相关元素含量
Table 1 Types and element contents of Standard Reference Materials for in situ trace element analyses of magnetite
标样名称 标样类型 Fe含量(%) 其他元素含量 (μg/g) 研制机构 NIST 610 合成硅酸盐玻璃 0.046 25~488 美国国家标准与 技术研究院 (NIST) NIST 361 铁合金 95.6 0.3~20000 NIST 2782 工业残渣 26.9 0.06~20300 GSE-1G 合成玄武岩玻璃 9.88 1.17~250600 美国地质调查局 (USGS) BCR-2G 玄武岩玻璃 9.66 0.5~252460 BHVO-2G 玄武岩玻璃 8.63 0.3~232866 BIR-1G 玄武岩玻璃 7.91 0.3~223813 GOR-2G 科马提岩玻璃 7.6 0.01~215133 MASS-1 硫化物压饼 15.6 0.03~276000 注:表中标样元素含量参考GeoReM数据库,具体见网站地址http://georem.mpch-mainz.gwdg.de/sample_query.asp。 表 2 LA-ICP-MS微量元素分析仪器参数
Table 2 Equipment parameters for LA-ICP-MS trace elemenetal analyses
ICP-MS工作参数 设定值 激光工作参数 设定值 射频功率 1550 W 波长 193 nm 等离子体气(Ar)流量 15 L/min 能量密度 8.5 J/cm2 辅助气(Ar)流量 1.02 L/min 载气 He 检测器 Dual(脉冲和模拟计数) 剥蚀方式 点剥蚀 扫描模式 跳峰 剥蚀束斑大小 32 μm 单位质量扫描时间 6 ms 剥蚀频率 6 Hz 获取模式 时间分辨率分析 脉冲数 300 表 3 监控样科马提质玻璃GOR-128g和自然岩浆磁铁矿BC 28微量元素分析结果
Table 3 Element concentrations of monitoring samples,komatitic glass GOR-128g and natural magmatic magnetite BC 28
元素 检测限 (μg/g) GOR-128g BC 28 测定值(μg/g) 推荐值(μg/g) 报道值(μg/g) 测定值(μg/g) 推荐值 (μg/g) 报道值(μg/g) 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 Mg 1.76 147258 8170 156826 1810 150143 23608 11933 1688 10860 9580 1463 Al 3.59 51866 1524 52446 900 49664 4221 22043 2322 19440 20116 3432 Sc 0.78 31.4 1.4 32.1 1.1 31.6 2.7 28 2 28.7 23.5 2.1 Ti 2.09 1578 90 1727 72 1521 147 87557 3358 82020 74459 5765 V 0.27 185 5 189 13 175 13 10217 594 9059 8822 623 Cr 4.76 2194 78 2272 171 1852 249 1429 83 1096 1150 100 Mn 2.16 1471 51 1361 70 1332 61 2409 297 1988 1824 118 Co 0.19 94.8 2.5 92.4 6.2 91.1 15.3 316 39 225 280 24 Ni 2.53 1168 53 1074 61 952 156 641 74 536 565 44 Cu 2.52 66.8 3.1 63.8 12.5 68 9 24 22 31 52 36 Zn 1.37 72.9 3.3 74.7 6.7 112 26 548 81 500 569 134 Ga 0.39 9.3 0.6 8.67 1.07 6.58 0.36 55 9 - 39 3 Ge 0.97 1.2 0.4 0.96 - 0.89 0.24 - - - - - Y 0.01 11.2 0.6 11.8 0.5 12.7 1.3 - - - - - Zr 0.23 9.5 0.9 10 0.5 11.6 1.9 22 4 26.1 1.8 Nb 0.03 0.080 0.024 0.099 0.007 0.101 0.028 1.55 0.10 1.47 0.17 Mo 0.10 0.606 0.140 0.71 0.26 0.67 0.31 - - - - - Hf <0.001 0.327 0.065 0.35 0.02 0.38 0.06 - - - - - Ta 0.003 0.015 0.005 0.019 0.001 0.024 0.009 - - - - - W 0.006 15.7 0.6 15.5 2.4 15 2 - - - - - Sn - - - - - - - 1.73 0.58 2.29 0.78 注:检测限为32 μm束斑时的检测限;测定值的平均值为50个样品的平均值;GOR-128g和BC 28的推荐值及报道值均引自Dare等[11];表中“-”代表缺失值。 -
Jackson S E,Longerich H P,Dunning G R,et al.The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-element Determinations in Minerals[J].Canadian Mineralogist,1992,30:1049-1064.
Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].The Canadian Mineralogist,1995,33:303-312.
Russo R E,Mao X L,Liu H C,et al.Laser Ablation in Analytical Chemistry-A Review[J].Talanta,2002,57(3):425-451. doi: 10.1016/S0039-9140(02)00053-X
Mokgalaka N S,Gardea-Torresdey J L.Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications[J].Applied Spectroscopy Reviews,2006,41(2):131-150. doi: 10.1080/05704920500510703
Cook N,Ciobanu C L,George L,et al.Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals,2016,6(111):1-34.
Norman M,Robinson P,Clark D.Major- and Trace-element Analysis of Sulfide Ores by Laser-Ablation ICP-MS,Solution ICP-MS,and XRF:New Data on International Reference Materials[J].The Canadian Mineralogist,2003,41(2):293-305. doi: 10.2113/gscanmin.41.2.293
Müller A,Wiedenbeck M,van Den Kerkhof A M,et al.Trace Elements in Quartz-A Combined Electron Microprobe,Secondary Ion Mass Spectrometry,Laser-Ablation ICP-MS,and Cathodoluminescence Study[J].European Journal of Mineralogy,2003,15(4):747-763. doi: 10.1127/0935-1221/2003/0015-0747
Danyushevsky L,Robinson P,Gilbert S,et al.Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry:Exploration,Environment,Analysis,2011,11:51-60. doi: 10.1144/1467-7873/09-244
Ding L,Yang G,Xia F,et al.A LA-ICP-MS Sulphide Calibration Standard Based on a Chalcogenide Glass[J].Mineralogical Magazine,2011,75(2):279-287. doi: 10.1180/minmag.2011.075.2.279
吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1 Wu S T,Wang Y P,Xu C X.Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
Dare S A S,Barnes S J,Beaudoin G.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geochimica et Cosmochimica Acta,2012,88:27-50. doi: 10.1016/j.gca.2012.04.032
Gao J F,Zhou M F,Lightfoot P C,et al.Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit,Xinjiang,Northwestern China[J].Economic Geology,2013,108:1833-1848. doi: 10.2113/econgeo.108.8.1833
Nadoll P,Angerer T,Mauk J L,et al.The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews,2014,61:1-32. doi: 10.1016/j.oregeorev.2013.12.013
Liu P P,Zhou M F,Chen W T,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province,SW China[J].Ore Geology Reviews,2015,65:853-871. doi: 10.1016/j.oregeorev.2014.09.002
Huang X W,Zhou M F,Qi L,et al.Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-hydrothermal Fe Deposit,NW China[J].Mineralium Deposita,2013,48(8):925-946. doi: 10.1007/s00126-013-0467-2
Huang X W,Gao J F,Qi L,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite:The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit,NW China[J].Ore Geology Reviews,2015,65:900-916. doi: 10.1016/j.oregeorev.2014.07.020
Huang X W,Zhou M F,Qiu Y Z,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit,North China[J].Ore Geology Reviews,2015,65:884-899. doi: 10.1016/j.oregeorev.2014.09.010
Chen W T,Zhou M F,Gao J F,et al.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province,SW China[J].Mineralium Deposita,2015,50(7):795-809. doi: 10.1007/s00126-014-0575-7
Nadoll P,Mauk J L,Leveille R A,et al.Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States[J].Mineralium Deposita,2015,50(4):493-515. doi: 10.1007/s00126-014-0539-y
Dupuis C,Beaudoin G.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types[J].Mineralium Deposita,2011,46(3):1-17.
Dare S A S,Barnes S J,Beaudoin G,et al.Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita,2014,49(7):785-796. doi: 10.1007/s00126-014-0529-0
Huang X,Qi L,Meng Y.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region,Eastern Tianshan Orogenic Belt,NW China[J].Acta Geologica Sinica (English Edition),2014,88(1):176-195. doi: 10.1111/acgs.2014.88.issue-1
Boutroy E,Dare S A S,Beaudoin G,et al.Magnetite Composition in Ni-Cu-PGE Deposits Worldwide and Its Application to Mineral Exploration[J].Journal of Geochemical Exploration,2014,145:64-81. doi: 10.1016/j.gexplo.2014.05.010
Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al.Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes:Application to Mineral Exploration[J].Ore Geology Reviews,2016,78:388-408. doi: 10.1016/j.oregeorev.2016.04.014
Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits:Case Studies from the Izok Lake (Nunavut,Canada) and Halfmile Lake (New Brunswick,Canada) Deposits[J].Ore Geology Reviews,2016,72:60-85. doi: 10.1016/j.oregeorev.2015.06.023
Nadoll P,Koenig A E.LA-ICP-MS of Magnetite:Methods and Reference Materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877. doi: 10.1039/c1ja10105f
张德贤,戴塔根,胡毅.磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J].岩矿测试,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1 Zhang D X,Dai T G,Hu Y.Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1
陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm Chen H Y,Han J S.Study of Magnetite:Problems and Future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm
Leach A M,Hieftje G M.Methods for Shot-to-Shot Normalization in Laser Ablation with an Inductively Coupled Plasma Time-of-Flight Mass Spectrometer[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1121-1124. doi: 10.1039/b001968m
Leach A M,Hieftje G M.Identification of Alloys Using Single Shot Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):852-857. doi: 10.1039/b203523p
Latkoczy C,Müller Y,Schmutz P,et al.Quantitative Element Mapping of Mg Alloys by Laser Ablation ICP-MS and EPMA[J].Applied Surface Science,2005,252(1):127-132. doi: 10.1016/j.apsusc.2005.02.040
Halicz L,Günther D.Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration[J].Journal of Analytical Atomic Spectrometry,2004,19(12):1539-1545. doi: 10.1039/B410132D
Guillong M,Hametner K,Reusser E,et al.Preliminary Characterisation of New Glass Reference Materials (GSA-1G,GSC-1G,GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm,213 nm and 266 nm Wavelengths[J].Geostandards and Geoanalytical Research,2005,29(3):315-331. doi: 10.1111/ggr.2005.29.issue-3
Liu Y,Hu Z,Gao S,et al.In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
Guillong M,Günther D.Effect of Particle Size Distri-bution on ICP-induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):831-837. doi: 10.1039/B202988J
Jackson S E,Günther D.The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2003,18(3):205-212. doi: 10.1039/b209620j
Longerich H P,Jackson S E,Günther D.Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry,1996,11(9):899-904. doi: 10.1039/JA9961100899
Raju P V S,Barnes S J,Savard D.Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS[C]//Proceedings of 11th International Platinum Symposium.Ontario:Ontario Geological Survey,2010:439-442.
Hu H,Lentz D,Li J W,et al.Reequilibration Processes in Magnetite from Iron Skarn Deposits[J].Economic Geology,2015,110(1):1-8. doi: 10.2113/econgeo.110.1.1
Hu H,Li J W,Lentz D,et al.Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for in-situ Chemical Analysis of Magnetite[J].Ore Geology Reviews,2014,57:393-405. doi: 10.1016/j.oregeorev.2013.07.008
-
期刊类型引用(11)
1. 黄小文,孟郁苗,漆亮,周美夫,高剑峰,谭侯铭睿,谢欢,谭茂,杨志爽,高英辉,张鑫. 磁铁矿:研究方法与矿床学应用. 华东地质. 2024(01): 1-15 . 百度学术
2. 宋洁瑞,李晓银,赵慧晖,刘智辉,陈海华,王震,刘随波,秦鹏,王春龙,黄世英. 用高效液相色谱梯度洗脱法测定合成橡胶中防老剂含量. 合成橡胶工业. 2024(06): 465-469 . 百度学术
3. 周帆,李明,柴辛娜,胡兆初,罗涛,胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成. 岩矿测试. 2021(01): 33-41 . 本站查看
4. 栾燕,孙晓辉,刘民武,何克. 磁铁矿LA-ICP-MS原位微量元素分析方法研究. 地质科技通报. 2021(02): 167-175 . 百度学术
5. 刘勇胜,屈文俊,漆亮,袁洪林,黄方,杨岳衡,胡兆初,朱振利,张文. 中国岩矿分析测试研究进展与展望(2011—2020). 矿物岩石地球化学通报. 2021(03): 515-539+776 . 百度学术
6. 钟宏,宋谢炎,黄智龙,蓝廷广,柏中杰,陈伟,朱经经. 近十年来中国矿床地球化学研究进展简述. 矿物岩石地球化学通报. 2021(04): 819-844+1001 . 百度学术
7. 郝宇杰,商青青,任云生,刘小禾,陈聪. LA-ICP-MS原位分析白钨矿稀土元素. 吉林大学学报(地球科学版). 2020(04): 1029-1041 . 百度学术
8. 魏均启,桂博艺,朱丹,王芳,鲁力,潘诗洋. 激光剥蚀电感耦合等离子体质谱联用工作参数优化及在黄铁矿原位分析中的应用. 资源环境与工程. 2019(04): 587-592 . 百度学术
9. Yichang Wang,Jianfeng Gao,Xiaowen Huang,Liang Qi,Chuan Lyu. Trace element composition of magnetite from the Xinqiao Fe–S(–Cu–Au) deposit, Tongling, Eastern China: constraints on fluid evolution and ore genesis. Acta Geochimica. 2018(05): 639-654 . 必应学术
10. 周亮亮,魏均启,王芳,仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试. 2017(04): 350-359 . 本站查看
11. 段超,李延河,毛景文,王丛林,杨秉阳,侯可军,王倩,李伟. 宁芜和尚桥铁氧化物-磷灰石矿床(IOA)成矿过程研究:来自磁铁矿LA-ICP-MS原位分析的证据. 岩石学报. 2017(11): 3471-3483 . 百度学术
其他类型引用(0)