Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Geochronology of Xujiawan Monzogranite in the Eastern Part of North Huaiyang and Their Geological Significance
-
摘要:
徐家湾二长花岗岩体位于北淮阳构造带内桐柏-桐城与郯城-庐江两大断裂的交汇处,岩体呈岩株状侵入新元古界老变质岩层中。本文利用原子吸收光谱和ICP-MS法测定了岩体主量和微量元素的含量,表明岩体具SiO2和Al2O3较高、富碱、过铝质、Mg#小等特征。大离子亲石元素(LILE)Rb、Ba富集,Sr亏损;高场强元素(HFSE)Y、Th、Nb、Hf、U富集,Ta、P、Ti亏损;岩体整体亏损HFSE,富集LILE;LaN/YbN与LREEs/HREEs值均较大,具较弱的δCe负异常,显示该岩体为过铝质A型花岗。LA-ICP-MS锆石U-Pb定年获得徐家湾二长花岗岩侵位年龄在128.0±0.9~129.6±1.4 Ma之间,是早白垩世岩浆活动的产物。研究认为徐家湾二长花岗岩体形成于造山后的伸展环境,形成岩体的岩浆源于岩石圈地幔,并受到地壳物质的混染。
-
关键词:
- 北淮阳构造带 /
- 二长花岗岩 /
- 地球化学 /
- LA-ICP-MS锆石U-Pb定年 /
- 早白垩世
Abstract:The Xujiawan monzogranitic intrusion is located at the junction of the Tongbai-Tongcheng fault and the Tancheng-Lujiang fault in North Huaiyang tectonic belt. The rocks intruded into the Neoproterozoic metamorphic rocks as stocks. In this study, major and trace element contents of the rocks are determined by Atomic Absorption Spectrometer and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Results show that these rocks have high contents of SiO2 and Al2O3 and are alkali-rich and peraluminous with low Mg# values. They are rich in large ion lithophile elements such as Rb and Ba, but are poor in Sr. They are rich in high field strength elements such as Y, Th, Nb, Hf, U, but are poor in Ta, P, Ti. In general, these rocks are deplete in HFSE but enriched in LILE. They have high LaN/YbN and LREE/HREE ratios and have weak Ce anomalies. Major and trace elements indicate that these rocks belong to peraluminous A-type granite. LA-ICP-MS Zircon U-Pb dating of Xujiawan monzogranite yield ages of 128.0 0.9 Ma to 129.6 1.4 Ma, indicating that these intrusions were produced by the early Cretaceous magmatism. Xujiawan monzogranite may have formed in a post-collisional extensional setting. The magma may be derived from the mantle and contaminated by the continental crust.
-
石膏是非金属矿产的典型代表,因其具有高强度、高绝缘性、耐高温、耐酸碱等诸多优良的理化性能,广泛应用于建筑、化工和中医等诸多领域。石膏已成为我国重点发展的非金属矿物之一,其中一些元素的含量对其品质有一定影响。例如Ca、S的含量是判别石膏品级的主要依据,建筑用石膏对Si、Al、K、Na的含量要求较高,硫酸工业中所用石膏对Mg的含量有限制,用于制造模型的石膏对Fe、Ti等元素的含量,医用石膏对微量元素Sr的含量都有要求。因此,准确测定石膏中主次量元素的含量对于石膏矿石的开发利用具有十分重要的意义。
石膏的成分分析通常采用化学法,如S用重量法测定,Ca、Mg、Al用EDTA容量法测定,Si、Fe用分光光度法测定。化学法的分析周期长、操作繁琐、试剂用量大。相比之下,X射线荧光光谱法(XRF)因绿色环保、制样简单、分析速度快,在主次量元素同时分析方面一直具有显著的技术优势。非金属矿物的XRF分析技术已有报道,但鲜有应用于石膏的报道。应用XRF分析非金属矿物时,通常采用熔融法制备样品[1, 2, 3],既能够消除矿物效应和粒度效应,降低基体的影响,还可以避免粉末制样法因粉末散落对X光管和试样室清洁度及真空度的影响[4, 5]。考虑到硫元素在高温下熔融时会挥发,袁秀茹等[6]分析白云岩采用粉末压片法对硫进行测试,其他元素则采用熔融法制样;刘江斌等[7]测定石灰石也是采用粉末压片法对硫进行测试,其他元素则采用熔融法制样。但是压制相应的样品需要更多的分析步骤,增加了工作量。李国会等[8]选用四硼酸锂-偏硼酸锂熔剂并加入硝酸锂氧化剂在1000℃熔融制样,防止了硫的熔融损失,而且能使各类岩石样品制成高质量的玻璃样片;宋义等[9]也采用四硼酸锂-偏硼酸锂并加入硝酸锂氧化剂在1000℃熔融制样,有效地降低了熔点,避免了熔融制样过程中硫的挥发;应晓浒等[10]采用四硼酸锂-偏硼酸锂在1000℃制备氟石熔融片,有效地抑制了样品中硫的挥发;李红叶等[11]采用四硼酸锂-偏硼酸锂在1050℃熔融制备样品,用XRF测定磷矿石中包括硫在内的13种主次量组分,取得了较好的分析结果。但是上述文献中硫元素的测定范围(0.01%~10.00%)比较窄,无法满足石膏中高含量硫(25.58%~58.82%)的测定需求。此外,石膏标准物质匮乏,难以建立适合各元素测量范围和梯度的标准曲线。
针对应用XRF分析石膏存在标准物质匮乏和硫含量较高在高温易挥发损失的问题,本文采用高纯硫酸钙、石膏标准物质与土壤、岩石、水系沉积物、碳酸盐等标准物质配制相应的人工标准物质;选用四硼酸锂-偏硼酸锂熔剂熔融制备石膏样品,有效地抑制样品中硫的挥发,同时消除样品的粒度效应和矿物效应,建立了XRF测定石膏矿中10个主次量元素(硅铝铁钙镁钾钠钛硫锶)的分析方法。
1. 实验部分
1.1 仪器及主要试剂
Axios PW型波长色散X射线荧光光谱仪(荷兰帕纳科公司),最大功率4.0 kW,最大激发电压60 kV,最大电流125 mA,SST超尖锐陶瓷端窗(75 μm)铑钯X射线光管,样品交换器一次最多可放68个样品(直径32 mm),SuperQ 5.0高级智能化操作软件。各元素的测量条件见表 1。
表 1 分析元素的测量条件Table 1. Measurement conditions of the elements by XRF元素 分析
谱线分析
晶体准直器
(μm)探测器 电压
(kV)电流
(mA)2θ(°) PHD范围 峰值 背景1 背景2 Si Kα PE 002 300 Flow 30 120 109.0782 2.3010 - 24~78 Al Kα PE 002 300 Flow 30 120 144.8664 2.4946 -1.8818 22~78 Fe Kα LiF 200 150 Duplex 60 60 57.5106 0.8464 - 15~72 Ca Kα LiF 200 150 Flow 30 120 113.1156 1.6210 - 29~73 Mg Kα PX1 700 Flow 30 120 22.5520 1.6984 -2.0654 35~65 K Kα LiF 200 300 Flow 30 120 136.6970 2.0160 - 31~74 Na Kα PX1 700 Flow 30 120 27.2838 2.2178 -1.7742 35~72 Ti Kα LiF 200 300 Flow 60 60 86.1606 -1.4094 - 27~71 S Kα Ge 111 300 Flow 30 120 110.6698 2.6996 - 35~65 Sr Kα LiF 200 150 Scint 60 60 25.1332 0.6856 - 22~78 Front-Ⅱ电热式熔片机(国家地质实验测试中心 & 北京卓信博澳仪器有限公司研制):一次可以同时熔融4个玻璃片。
铂黄合金坩埚(95% Pt+5% Au):用于制备熔融玻璃片。
四硼酸锂-偏硼酸锂(质量比22:12) 熔剂:高纯试剂(张家港市火炬分析仪器厂生产),在650℃马弗炉内烘4 h,冷却备用。
饱和溴化锂溶液(脱模剂)。
1.2 试样制备
准确称取0.6500 g样品和5.8500 g四硼酸锂-偏硼酸锂混合熔剂于瓷坩埚中,搅拌均匀,倒入铂黄合金坩埚中,加入1滴饱和溴化锂溶液,放入已升温至1050℃的熔样机中按照设定程序全自动熔融玻璃片。熔样程序为:样品预熔2 min,上举1.5 min,摆平0.5 min,往复4次(在此期间熔样机内部不停旋转)后取出,冷却后贴标签放入干燥器待测。
1.3 标准曲线
由于地质样品基体复杂,测量结果易受基体效应的影响,因此在XRF分析中保持基体的一致性是准确分析的重要因素。依据石膏矿物组分特征及含量范围,本研究采用高纯硫酸钙、石膏标准物质(GBW03109a、GBW03111a)与土壤(GBW07401~GBW07411)、岩石(GBW07101~GBW07112)、水系沉积物(GBW07301~GBW07302)、碳酸盐岩(GBW07127~GBW07136) 国家一级标准物质,配制相应的人工标准样品SG1~SG12。各元素的含量范围(%)为:SiO2 0.295~36.59,Al2O3 0.042~14.98,Fe2O3 0.036~13.40,CaO 10.00~49.24,MgO 0.173~13.00,K2O 0.006~1.52,Na2O 0.005~1.84,TiO2 0.002~4.13,SO3 12.60~51.91,SrO 0.002~0.183。
2. 结果与讨论
2.1 熔剂及稀释比的确定
熔样之前需要选定合适的熔剂,以使熔剂和石膏样品的酸度相适宜,本研究根据能量最低原理[12]选定适合熔融石膏样品的四硼酸锂-偏硼酸锂(质量比22:12) 作为熔剂。
石膏样品中的待测元素含量相差较大,为了准确测量,对样品与熔剂的稀释比(样品与熔剂的质量比)进行了试验。低倍稀释时,样品流动性较差;高倍稀释时,样品中低含量元素强度太低,精密度较差。本研究最终选择m(样品):m(熔剂)=1:9的稀释比熔融样品,所制备的样品均匀、浓度适中、能够兼顾不同元素、不同含量的测定。
2.2 熔矿温度的选择
称取5件不同含量的石膏样品,分别在950℃、1000℃、1050℃、1100℃、1150℃温度下按1.2节所述实验方案熔融样品,样品熔融情况见表 2。可以看出,样品在1050℃以上时均能熔清。
表 2 不同温度下样品的熔融情况Table 2. The melting effect of samples at different temperatures样品编号 950℃ 1000℃ 1050℃ 1100℃ 1150℃ 样品1 有不熔物 熔清 熔清 熔清 熔清 样品2 有不熔物 熔清 熔清 熔清 熔清 样品3 有不熔物 熔清 熔清 熔清 熔清 样品4 有不熔物 有不熔物 熔清 熔清 熔清 样品5 有不熔物 熔清 熔清 熔清 熔清 在高温下熔融含硫的矿物时,会出现硫损失和热稳定性的问题。因此称取石膏标准物质GBW03109a和GBW03111a分别在1050℃、1100℃、1150℃、1200℃、1250℃温度下熔融并进行硫的荧光强度测定,结果表明温度在1050~1150℃范围内,硫的荧光强度变化不大,分别在226~229 kcps(GBW03109a)、172~176 kcps(GBW03111a)之间波动;在1200℃时,硫的荧光强度明显减弱,到1250℃时,硫的荧光强度分别降至106 kcps(GBW03109a)、102 kcps(GBW03111a)。这表明当温度不高于1150℃时,石膏矿中的硫在熔融过程中基本没有挥发损失,可能是因为石膏中的硫主要以硫酸盐形式存在,可以在此温度下保持稳定[13, 14, 15];另外,熔剂中含有碱性的偏硼酸锂能够很好地结合强酸性的SO3,从而将硫保留在玻璃熔片中。考虑到高温时熔样机和铂黄合金坩埚的损耗较大,故选择熔矿温度为1050℃。
2.3 基体效应校正
用熔融法制样虽然消除了粒度、矿物效应及减小了基体效应,但由于石膏中各组分的含量变化很大,仍需采用理论α系数进行基体效应校正。校正公式如下:
式中:wi为未知样品中分析元素i的含量;Di为分析元素i校准曲线的截矩;Lik为干扰元素k对分析元素i的谱线重叠干扰校正系数;Zk为干扰元素k的含量或计数率;Ei为分析元素i校准曲线的斜率;Ri为分析元素i的计数率;Zj为共存元素j的含量;n为共存元素j的数目;α为基体校正因子;i、j和k分别为分析元素、共存元素和干扰元素。
2.4 标准化样品的选择
标准化样品用来修正环境条件及仪器的微小变化对分析结果的影响。标准化样品的含量过高,其计数率高,在校正系数中不能很好地反映仪器的较大变化;标准化样品的含量太低,其计数率低,校正系数会扩大仪器的微小变化,从而造成较大的分析误差。漂移校正样品可单独准备,制备方法与样品制备方法相同,也可直接从绘制标准曲线的标准样品中选取,本文直接从标准样品中选取一个含量适中的样品作为标准化样品,每次校准前制备标准化样品。
2.5 分析技术指标
2.5.1 方法检出限
根据分析元素的测量时间,按下列公式计算各元素的检出限(LOD),计算结果见表 3。
表 3 方法检出限Table 3. Detection limits of the method元素 检出限(μg/g) 元素 检出限(μg/g) 本法 相关方法 本法 相关方法 SiO2 135 42~400 K2O 18 35~400 Al2O3 126 77~400 Na2O 75 89~400 Fe2O3 17 18~400 TiO2 25 61~500 MgO 30 98~283 SO3 76 92 CaO 79 181~500 SrO 4 6~61 式中:m为单位含量的计数率;Ib为背景计数率;t为峰值及背景的总测量时间。
从表 3可以看出,方法检出限为4~135 μg/g,基本低于相关方法的检出限,可以满足石膏样品中主次量元素的测试需求。
2.5.2 方法精密度和准确度
一个样品多次制样和多次测量的结果稳定性反映了分析方法的可行性以及制样过程的可重复性和可操作性。采用玻璃熔片法对一个石膏样品重复制备12个样片,按表 1的测量条件分别对12个样片进行测量,然后将其中的一个样片重复测量12次。由表 4分析结果可知,仪器精密度(RSD)均低于1%;除了含量较低的Na2O、TiO2、SrO等元素的RSD不高于3%以外,其余元素的RSD均低于1%,能够满足实际样品的分析需求。
表 4 方法精密度Table 4. Precision tests of the method元素 仪器精密度 方法精密度 12次测定平均值
(%)RSD
(%)12次测定平均值
(%)RSD
(%)SiO2 7.28 0.2 7.24 0.4 Al2O3 1.99 0.2 1.95 0.4 Fe2O3 0.60 0.3 0.62 0.4 MgO 4.94 0.2 4.98 0.9 CaO 28.62 0.1 28.38 0.5 K2O 0.36 0.3 0.39 0.3 Na2O 0.019 1.0 0.023 2.4 TiO2 0.101 0.6 0.099 1.6 SO3 32.74 0.04 32.58 0.4 SrO 0.073 0.3 0.077 1.6 利用本文建立的方法,测定不参加回归的石膏标准物质GBW03110和GBW03110与其他标准物质所配制的人工校准样品SG13,表 5的分析结果表明,测量值与标准值基本一致,可以满足石膏中主次量元素的定量要求。
表 5 标准物质分析结果Table 5. Analytical results of elements in national and synthetic reference materials元素 国家标准物质GBW03110 人工校准样品SG-13 标准值
(%)本法测定值
(%)参考值
(%)本法测定值
(%)SiO2 7.21 7.22 23.22 23.41 Al2O3 1.92 1.95 7.12 7.11 Fe2O3 0.63 0.62 2.77 2.69 MgO 4.92 4.99 4.02 4.05 CaO 28.50 28.32 19.92 19.68 K2O 0.38 0.40 1.54 1.51 Na2O 0.021 0.022 0.12 0.11 TiO2 0.10 0.099 0.27 0.28 SO3 32.55 32.69 22.54 22.41 SrO 0.071 0.077 0.052 0.050 3. 结论
本研究建立了采用熔融制样X射线荧光光谱仪测定石膏中钙、硫、硅等主次量元素的分析方法。针对硫含量在12.60%~51.91%之间的石膏样品,使用四硼酸锂-偏硼酸锂(质量比22:12) 熔剂可以在熔融过程中有效结合石膏中的硫,抑制了硫在高温下的挥发。选择石膏、高纯硫酸钙和其他标准物质配制成相应的人工校准样品,有效地解决了石膏标准物质缺乏的问题,同时加强了样品基体的适应性。采用高温熔融制样结合理论α系数消除矿物效应、粒度效应以及校正谱线重叠干扰和基体效应,满足了地质样品批量分析测试的需要,尤其是在非金属矿物分析领域具有良好的推广应用价值。
-
图 1 北淮阳地区区域构造位置图(a)及徐家湾地区地质简图(b)
1—地层界线;2—实测断层;3—推测断层;4—推覆型剪切带;5—水系;6—岩体;7—脉岩;8—矿产地及编号;9—采样点位置及编号。 断裂:①固始—合肥断裂,②信阳—防虎山断裂,③桐柏—桐城断裂,④金寨—舒城断裂,⑤郯城—庐江断裂,⑥商城—麻城断裂,⑦罗山—大悟断裂,⑧随县—浠水断裂,⑨银沙—泗河断裂。Qhf—全新统丰乐镇组,K1-2x—中—下白垩统晓天组,K1m—下白垩统毛坦厂组,ZDxy—泥盆—震旦统祥云寨岩组,Pt3x—新元古界小溪河岩组,Pt3zj—新元古界郑家冲片麻岩,Pt3tj—新元古界陶家湾片麻岩,Pt3gt—新元古界古塘岗片麻岩,ξ—正长岩,ξγ—正长花岗岩,ξοπ—石英正长斑岩,ξπ—正长斑岩,δο—石英闪长岩,δμ—闪长玢岩,γδ—花岗斑岩,ηγ—二长花岗岩,ηο—石英二长岩。
Figure 1. Regional structural position map of the north Huaiyang area (a) and the geological map of the Xujiawan area
表 1 徐家湾二长花岗岩全岩主量(%)和微量(×10-6)数据
Table 1 Chemical compositions (%),REE and trace element (×10-6) compositions of the Xujiawan monzogranite
主微量元素 采样点位TW13 采样点位TW15 h56 h57 h58 h59 h60 h66 h67 h68 h69 h70 SiO2 68.91 69.23 68.90 68.39 68.39 69.28 69.47 69.65 69.81 69.50 TiO2 0.48 0.44 0.51 0.48 0.51 0.46 0.46 0.47 0.49 0.46 Al2O3 15.30 14.84 14.78 15.32 15.01 14.94 15.00 14.43 14.79 14.85 Fe2O3 2.09 1.84 1.79 0.78 1.82 1.37 1.54 1.27 1.49 1.54 FeO 0.80 0.98 1.18 1.91 1.21 1.38 1.15 1.47 1.30 1.18 MnO 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.06 MgO 0.98 0.96 1.02 1.04 1.11 1.04 1.00 1.01 1.05 1.05 CaO 1.49 1.71 1.82 1.87 1.93 1.93 1.72 1.75 1.86 1.94 Na2O 4.00 3.87 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 K2O 4.84 4.59 4.58 4.74 4.59 4.76 4.80 4.70 4.67 4.77 P2O5 0.19 0.17 0.20 0.20 0.21 0.17 0.16 0.17 0.17 0.17 H2O+ 0.22 0.22 0.62 0.66 0.62 0.44 0.60 0.50 0.44 0.66 LOI 0.65 0.63 0.73 0.89 0.88 0.69 0.69 0.74 0.63 0.73 Total 100.02 99.55 99.98 100.11 100.11 100.30 100.41 100.00 100.54 100.69 Mg# 0.50 0.49 0.48 0.45 0.50 0.49 0.50 0.47 0.49 0.50 DI 86.09 85.37 84.56 83.45 83.68 84.33 85.32 85.27 84.71 84.62 SI 7.77 7.88 8.29 8.51 8.86 8.48 8.20 8.24 8.53 8.52 A/NCK 1.05 1.02 1.02 1.04 1.02 1.00 1.03 0.99 1.01 1.00 A/NK 1.29 1.31 1.32 1.35 1.34 1.31 1.31 1.28 1.31 1.30 La 67.02 78.90 76.54 60.49 64.17 67.61 69.23 81.43 81.27 73.58 Ce 119.88 133.54 153.87 115.22 126.76 126.13 123.16 152.81 149.11 137.67 Pr 13.01 14.03 15.89 12.94 14.66 13.60 13.38 15.71 15.24 14.38 Nd 47.59 49.93 57.24 47.28 53.15 48.80 47.15 55.46 54.15 51.67 Sm 7.09 7.34 8.30 7.11 8.05 7.35 6.95 7.99 7.92 7.65 Eu 1.39 1.43 1.55 1.46 1.55 1.36 1.31 1.39 1.38 1.37 Gd 6.25 6.54 7.34 6.24 6.96 6.42 6.08 7.16 6.90 6.68 Tb 0.84 0.85 0.95 0.82 0.92 0.84 0.81 0.93 0.89 0.89 Dy 4.25 4.39 5.01 4.27 4.86 4.32 4.13 4.79 4.68 4.57 Ho 0.82 0.84 0.95 0.82 0.93 0.84 0.80 0.90 0.89 0.87 Er 2.37 2.43 2.80 2.41 2.72 2.42 2.36 2.70 2.62 2.53 Tm 0.37 0.39 0.44 0.38 0.43 0.39 0.38 0.42 0.41 0.41 Yb 2.46 2.54 2.96 2.49 2.82 2.56 2.44 2.77 2.67 2.68 Lu 0.38 0.39 0.44 0.37 0.42 0.39 0.39 0.42 0.41 0.42 Y 23.41 24.03 26.86 23.27 26.17 23.73 22.85 25.57 25.52 25.04 ΣREEs 273.72 303.53 334.29 262.28 288.40 283.02 278.57 334.89 328.54 305.36 LREEs 255.99 285.17 313.40 244.49 268.34 264.85 261.19 314.80 309.06 286.32 HREEs 17.74 18.36 20.89 17.79 20.06 18.18 17.38 20.09 19.48 19.04 LREEs/HREEs 14.43 15.53 15.00 13.75 13.38 14.57 15.03 15.67 15.86 15.04 LaN/YbN 19.57 22.31 18.54 17.42 16.31 18.94 20.37 21.07 21.81 19.68 δEu 0.63 0.62 0.60 0.65 0.62 0.59 0.60 0.55 0.56 0.57 δCe 0.93 0.91 1.03 0.96 0.97 0.96 0.93 0.98 0.97 0.97 Rb 155.95 151.21 156.61 146.94 147.98 169.69 175.19 179.84 164.48 179.74 Ba 1604.42 1452.62 1542.51 1839.10 1669.08 1500.75 1482.74 1308.65 1371.58 1326.25 Th 22.36 33.51 31.21 13.50 13.75 40.64 37.46 37.32 40.16 39.07 U 3.44 4.99 5.77 4.88 5.43 8.97 7.66 7.75 7.60 7.92 Ta 1.67 1.71 1.65 1.37 1.69 1.91 1.87 1.87 2.00 1.99 Nb 20.89 20.85 22.54 19.52 22.87 22.38 22.02 22.21 24.48 24.50 Sr 522.93 440.96 564.15 537.87 501.39 531.56 501.39 481.61 415.79 495.28 Zr 228.16 228.80 260.80 225.60 265.04 234.16 254.88 227.92 281.20 254.80 Hf 7.22 7.15 7.85 6.98 7.97 7.65 8.13 7.48 8.76 8.42 注:A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK= Al2O3/(Na2O+K2O);Mg#=MgO/(MgO+FeO+Fe2O3)。 表 2 徐家湾二长花岗岩LA-ICP-MS 锆石 U-Pb分析结果
Table 2 LA-ICP-MS zircon U-Pb dating results of Xujiawan monzogranite
分析点 Th(×10-6) U (×10-6) Th/U 同位素比值 U-Pb同位素年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW13-1 254.73 212.68 1.20 0.05068 0.00252 0.13545 0.00844 0.01994 0.00029 226 106 129 8 127 2 TW13-2 242.58 219.72 1.10 0.09406 0.00572 0.25730 0.01964 0.02014 0.00036 1509 106 232 16 129 2 TW13-3 377.69 232.10 1.63 0.06012 0.00315 0.16765 0.01107 0.02068 0.00032 608 105 157 10 132 2 TW13-5 352.79 345.10 1.02 0.07102 0.00300 0.19906 0.01071 0.02037 0.00027 958 85 184 9 130 2 TW13-6 278.38 235.81 1.18 0.09814 0.00428 0.27780 0.01554 0.02033 0.00029 1589 80 249 12 130 2 TW13-8 383.94 366.22 1.05 0.04832 0.00221 0.13166 0.00751 0.01983 0.00026 115 99 126 7 127 2 TW13-9 387.59 298.68 1.30 0.05374 0.00223 0.15151 0.00809 0.02091 0.00029 360 88 143 7 133 2 TW13-10 374.05 297.85 1.26 0.05357 0.00243 0.14821 0.00846 0.02024 0.00027 353 97 140 7 129 2 TW13-11 237.45 216.71 1.10 0.05874 0.00377 0.16699 0.01315 0.02113 0.00035 558 132 157 11 135 2 TW13-12 465.71 361.73 1.29 0.05115 0.00262 0.13586 0.00892 0.01964 0.00033 248 127 129 8 125 2 TW13-13 421.13 377.90 1.11 0.04639 0.00198 0.12424 0.00666 0.01934 0.00024 18 97 119 6 123 2 TW13-15 376.79 388.55 0.97 0.04707 0.00183 0.13155 0.00659 0.02006 0.00026 53 76 125 6 128 2 TW13-16 234.80 229.64 1.02 0.04710 0.00249 0.13602 0.00890 0.02122 0.00030 54 103 129 8 135 2 TW13-17 354.26 255.58 1.39 0.06026 0.00259 0.16119 0.00892 0.02010 0.00029 613 87 152 8 128 2 TW13-18 380.09 294.50 1.29 0.05304 0.00227 0.14200 0.00782 0.01941 0.00027 331 91 135 7 124 2 TW13-19 415.00 433.25 0.96 0.04946 0.00211 0.13867 0.00805 0.02054 0.00037 170 92 132 7 131 2 TW13-20 212.82 159.96 1.33 0.04291 0.00256 0.12228 0.00893 0.02139 0.00032 -128 126 117 8 136 2 TW13-21 261.62 237.07 1.10 0.07079 0.00380 0.20722 0.01382 0.02043 0.00031 951 112 191 12 130 2 TW13-22 379.95 315.50 1.20 0.05912 0.00285 0.16768 0.01005 0.02073 0.00028 572 107 157 9 132 2 TW13-23 322.62 268.86 1.20 0.04620 0.00244 0.13155 0.00853 0.02002 0.00027 8 101 125 8 128 2 TW13-24 257.50 231.09 1.11 0.04861 0.00259 0.13017 0.00866 0.01995 0.00030 129 110 124 8 127 2 TW13-25 214.70 206.13 1.04 0.07574 0.00678 0.20706 0.02226 0.02033 0.00042 1088 168 191 19 130 3 TW13-26 260.19 216.91 1.20 0.05623 0.00321 0.15526 0.01081 0.02022 0.00029 461 126 147 10 129 2 TW13-27 259.70 257.10 1.01 0.05307 0.00266 0.14763 0.00927 0.02070 0.00030 332 113 140 8 132 2 TW15-1 230.34 232.66 0.99 0.05131 0.00304 0.13601 0.00998 0.01991 0.00032 255 132 129 9 127 2 TW15-2 490.31 304.56 1.61 0.06175 0.00297 0.17327 0.01036 0.01998 0.00027 665 101 162 9 127 2 TW15-4 320.82 200.06 1.60 0.04583 0.00489 0.12089 0.01526 0.01964 0.00043 -11 200 116 14 125 3 TW15-5 187.05 161.41 1.16 0.06710 0.00532 0.18972 0.01869 0.02104 0.00046 841 166 176 16 134 3 TW15-6 287.84 236.29 1.22 0.07091 0.00743 0.19275 0.02376 0.01954 0.00041 955 220 179 20 125 3 TW15-7 585.28 249.81 2.34 0.06950 0.00364 0.19812 0.01296 0.02090 0.00031 914 106 184 11 133 2 TW15-8 185.81 237.63 0.78 0.06593 0.00366 0.17352 0.01203 0.02006 0.00032 804 115 162 10 128 2 TW15-9 257.01 255.81 1.00 0.05091 0.0028 0.14190 0.00951 0.02046 0.00028 237 122 135 8 131 2 TW15-11 291.85 254.45 1.15 0.06608 0.00453 0.18073 0.01464 0.02005 0.00028 809 143 169 13 128 2 TW15-12 356.89 294.66 1.21 0.05376 0.00293 0.14500 0.00967 0.01919 0.00027 361 120 137 9 123 2 TW15-13 423.37 366.81 1.15 0.05262 0.00257 0.14025 0.00844 0.01937 0.00025 312 108 133 8 124 2 TW15-14 249.03 219.13 1.14 0.09308 0.00517 0.25809 0.01884 0.02052 0.00041 1490 104 233 15 131 3 TW15-15 361.94 272.70 1.33 0.04851 0.00281 0.12792 0.00894 0.01986 0.00027 124 124 122 8 127 2 TW15-16 320.60 266.28 1.20 0.04920 0.00306 0.13301 0.00991 0.01974 0.00028 157 135 127 9 126 2 TW15-17 308.61 255.64 1.21 0.05373 0.00284 0.15262 0.00984 0.02074 0.00028 360 116 144 9 132 2 TW15-18 220.80 202.19 1.09 0.06699 0.00368 0.18418 0.0125 0.01993 0.00029 838 113 172 11 127 2 TW15-19 228.61 204.68 1.12 0.04721 0.00323 0.12842 0.01048 0.01995 0.00030 60 143 123 9 127 2 TW15-20 275.97 266.77 1.03 0.04972 0.00271 0.13890 0.00926 0.02015 0.00028 182 120 132 8 129 2 TW15-21 304.01 255.06 1.19 0.04465 0.00317 0.12326 0.01031 0.02041 0.00030 -37 139 118 9 130 2 TW15-23 340.46 234.82 1.45 0.09257 0.00591 0.25569 0.01997 0.02001 0.00033 1479 120 231 16 128 2 TW15-25 243.26 203.15 1.20 0.05453 0.00371 0.14805 0.01220 0.02016 0.00033 393 150 140 11 129 2 TW15-27 154.81 165.70 0.93 0.05711 0.00394 0.15774 0.01310 0.02024 0.00033 496 151 149 11 129 2 TW15-28 285.16 221.70 1.29 0.06209 0.00355 0.16854 0.01185 0.02008 0.00030 677 121 158 10 128 2 TW15-29 125.60 132.05 0.95 0.04958 0.00389 0.14565 0.01357 0.02038 0.00034 175 171 138 12 130 2 TW15-30 285.79 223.78 1.28 0.05386 0.00298 0.14342 0.00974 0.02001 0.00029 365 122 136 9 128 2 TW15-32 258.32 228.16 1.13 0.06404 0.00469 0.18696 0.01625 0.02068 0.00032 743 155 174 14 132 2 TW15-33 418.98 376.16 1.11 0.05722 0.00388 0.15508 0.01281 0.01928 0.00033 500 148 146 11 123 2 TW15-34 198.71 208.76 0.95 0.05991 0.00387 0.16553 0.01298 0.02042 0.00032 600 139 156 11 130 2 TW15-35 334.33 270.31 1.24 0.05600 0.00378 0.15774 0.01293 0.01974 0.00032 452 148 149 11 126 2 TW15-36 530.61 346.10 1.53 0.04740 0.00264 0.13081 0.00884 0.01987 0.00027 69 115 125 8 127 2 TW15-37 306.33 247.06 1.24 0.05203 0.00282 0.14585 0.00977 0.02019 0.00029 287 121 138 9 129 2 TW15-38 198.56 153.88 1.29 0.13325 0.00850 0.34771 0.02817 0.01971 0.00039 2141 110 303 21 126 2 -
[1] 徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程[J].地质学报,1992,66(1):1-14. Xu S T,Jiang L L,Liu Y C,et al.Tectonic Framework and Evolution of the Dabie Mountains in Anhui,Eastern China[J].Acta Geologica Sinica,1992,66(1):1-14.
[2] 周泰禧,陈江峰,张巽,等.北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义[J].地质论评,1995,41(2):144-151. Zhou T X,Chen J F,Zhang X,et al.Geochemistry of the North Huaiyang Granite-Syenite Zone and Its Tectonic Implication[J].Geological Review,1995,41(2):144-151.
[3] Xu X C,Lou J W,Xie Q Q,et al.Gochronology and Tectonic Setting of Pb-Zn-Mo Deposits and Related Igneous Rocks in the Yinshan Region,Jinzhai,Anhui Province,China[J].Ore Geology Reviews,2011,43:132-141.
[4] Chen Y J,Wang Y.Fluid Inclusion Study of the Tangjiaping Mo Deposit,Dabie Shan,Henan Province:Implications for the Nature of the Porphyry Systems of Post-collisional Tectonic Settings[J].International Geology Review,2011,53(5-6):635-655.
[5] Yang Y F,Chen Y J,Li N,et al.Fluid Inclusion and Isotope Geochemistry of the Qian’echong Giant Porphyry Mo Deposit,Dabie Shan,China:A Case of NaCl-poor,CO2-rich Fluid Systems[J].Journal of Geochemical Exploration,2013,124:1-13.
[6] 李毅,李诺,杨永飞,等.大别山北麓钼矿床地质特征和地球动力学背景[J].岩石学报,2013,29(1):95-106. Li Y,Li N,Yang Y F,et al.Geological Features and Geodynamic Settings of the Mo Deposits in the Northern Segment of the Dabie Mountains[J].Acta Petrologica Sinica,2013,29(1):95-106.
[7] 陈红瑾,陈衍景,张静,等.安徽省金寨县沙坪沟钼矿含矿岩体锆石 U-Pb 年龄和Hf 同位素特征及其地质意义[J].岩石学报,2013,29(1):131-145. Chen H J,Chen Y J,Zhang J,et al.Ziron U-Pb Ages and Hf Isotope Characteristics of the Ore-bearing Intrusion from the Shapinggou Molybdenum Deposit,Jinzhai County,Anhui Province[J].Acta Petrologica Sinica,2013,29(1):131-145.
[8] 杨泽强,唐相伟.北大别山肖畈岩体地球化学特征和锆石LA-ICP-MS U-Pb同位素定年[J].地质学报,2015,89(4):692-700. Yang Z Q,Tang X W.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Isotopic Dating of the Xiaofan Rock Bodies in North Dabieshan[J].Acta Geologica Sinica,2015,89(4):692-700.
[9] 彭智.北淮阳东段基础地质评述[J].安徽地质,2004,14(3):172-176. Peng Z.A Review on Fundamental Geology in the Eastern Segment of Northern Huaiyang Belt[J].Acta Petrologica Sinica,2013,29(1):95-176.
[10] 邱检生,王德滋,刘洪,等.大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因[J].岩石学报,2002,18(3):319-330. Qiu J S,Wang D Z,Liu H,et al.Post-collisional Potash-rich Volcanic Rockes in the North Margin of Dabie Orogenic Belt Geochemistry and Petrogenesis[J].Acta Petrologica Sinica,2002,18(3):319-330.
[11] Zeng L S,Gao L E,Dong C Y,et al.High-pressure Melting of Metapelite and the Formation of Ca-rich Granitic Melts in the Namche Barwa Massif,Southern Tibet[J].Gondwana Research,2012,21:138-151. [12] Yuan H L,Gao S,Liu X M,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28:353-370
[13] Anderson T. Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb[J].Chemical Geology,2002,29:59-79.
[14] Middlemost E A K.Naming Materials in the Magma/Igneous Rock System[J].Earth-Science Review,1994,37:215-224.
[15] Ewart A.The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-basaltic Compositional Range[M].Andesites:Wiley,1982:25-87.
[16] Sun S S,Mc Donough W F.Chemmical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process[M]//Sauders A D,Norry M J.Magmatism in the Ocean Basins.London Geological Society,1989:313-345.
[17] 吴元保,郑永飞.锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J].科学通报,2004,49(16):1589-1604. Wu Y B,Zheng Y F.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J].Chinese Science Bulletin,2004,49(16):1589-1604.
[18] Belousova E A,Griffin W L,O’Reilly S Y,et al.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J].Contributions to Mineralogy and Petrology,2002,143:602-622.
[19] 吴锁平,王梅英,戚开静.A型花岗岩研究现状及其评述[J].岩石矿物学杂志,2007,26(1):57-66. Wu S P,Wang M Y,Qi K J.Present Situation of Researches on A-type Granites:A Review[J].Acta Petrologica et Minralogica,2007,26(1):57-66.
[20] 苏玉平,唐红峰.A型花岗岩的徽量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-250. Su Y P,Tang H F.Trace Element Geochemistry of A-type Granites[J].Bulletin of Mineralogy,Petrology and Geochemistry,2005,24(3):245-250.
[21] Whalen J B.A-type Granites:Geochemical Characteris-tics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
[22] 周泰禧,陈江峰,李学明,等.安徽霍舒正长岩带侵入体的40Ar/39Ar法同位素地质年龄[J].安徽地质,1992,2(1):4-11. Zhou T X,Chen J F,Li X M, et al.40Ar/39Ar Isotopic Dating of Intrusions From Huoshan-Shucheng Syenite Zone,Anhui province[J].Geology of Anhui,1992,2(1):4-11.
[23] 杨祝良,沈加林,沈渭洲,等.北淮阳中生代火山-侵入岩同位素年代学研究[J].地质论评,1999,45(增刊):674-680. Yang Z L,Shen J L,Shen W Z,et al.Isotopic Chronology of Mesozoic Volcanic-intrusive Rocks in Beihuaiyang[J].Geological Review,1999,45(Supplement):674-680.
[24] Wong J,Sun M,Xing G F,et al.Geochemical and Zircon U-Pb and Hf isotopic Study of the Baijuhuajian Metaluminous A-type Granite:Extension at 125~100Ma and Its Tectonic Significance for South China[J].Lithos,2009,112(3-4):289-305.
[25] Li H,Zhang H,Ling M X,et al.Geochemical and Zircon U-Pb Study of the Huangmeijian A-type Granite:Implications for Geological Evolution of the Lower Yangtze River Belt[J].International Geology Review,2011,53(5-6):499-525.
[26] 范裕,周涛发,袁峰,等.安徽庐江—枞阳地区 A 型花岗岩的LA-ICP-MS定年及其地质意义[J].岩石学报,2008,24(8): 1715-1724. Fan Y,Zhou T F,Yuan F,et al.LA-ICP-MS Zircon U-Pb Ages of the A-type Granites in the Lu-Zong (Lujiang-Zongyang) Area and Their Geological Significances[J].Acta Petrologica Sinica,2008,24(8):1715-1724
[27] 胡正华,王先广,李永明,等.长江中下游九瑞矿集区宝山铜多金属矿床辉钼矿Re-Os年龄及其地质意义[J].中国地质,2015,42(2):585-596. Hu Z H,Wang X G,Li Y M,et al.Re-Os Age of Molybdenite from the Baoshan Copper Polymetallic Deposit in the Jiurui Ore Concentration Age along the Middle Lower Yangtze River Region and Its Geological Significance[J].Geology in China,2015,42(2):585-596.
[28] 王登红,陈郑辉,陈毓川,等.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,2010,84(7):1030-1040. Wang D H,Chen Z H,Chen Y C,et al.New Data of the Rock-forming and Ore-forming Chronology for China’s Important Mineral Resources Area[J].Acta Geologica Sinica,2010,84(7):1030-1040.
[29] 薛怀民,汪应庚,马芳,等.皖南太平-黄山复合岩体的SHRIMP年代学:由钙碱性向碱性转变对扬子克拉通东南部中生代岩石圈减薄时间的约束[J].中国科学(地球科学),2009,39(7):979-993. Xue H M,Wang Y G,Ma F,et al.Zircon U-Pb SHRIMP Ages of the Taiping (Calc-alkaline)-Huangshan (Alkaline) Composite Intrusive:Constraints on Mesozoic Lithospheric Thinning of the Southeastern Yangtze Craton,China[J].Scientia Sinica Terrae,2009,39(7):979-993.
[30] Song G X,Qin K Z,Li G M,et al.Zircon SMS U-Pb and Molybdenite Re-Os Ages of Baizhangyan W-Mo Deposit Middle-Lower Yangtze Valley.Constraints on Tectonic Setting of Magmatism and Mineralization[J].International Geology Review,2012,69:853-868.
[31] 陈芳,杜建国,许卫.安徽青阳百丈岩钨钼矿床成矿背景与成矿模式[J].地质论评,2013,59(3):437-445. Chen F,Du J G,Xu W.Ore-forming Setting and Metallogenetic Model of the Baizhangyan Tungsten-Molybdenum Deposit in Qingyang,Anhui Province[J].Geological Review,2013,59(3):437-445.
[32] 陈芳,王登红,杜建国,等.安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义[J].岩矿测试,2013,32(6):970-977. Chen F,Wang D H,Du J G,et al.New Dating of the Fuling Granite Body with LA-ICP-MS Zircon U-Pb in Jixi,Anhui Province and Their Geological Significance[J].Rock and Mineral Analysis,2013,32(6):970-977.
[33] 陈芳,王登红,杜建国,等.安徽宁国刘村二长花岗岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报,2014,88(54):869-882. Chen F,Wang D H,Du J G,et al.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Geochronology of the Liucun Monzogranite in Ningguo,Anhui Province and Their Geological Significance[J].Acta Geologica Sinica,2014,88(54):869-882.
[34] Loiselle M C,Wones D R.Characteristics of Anorogenic Granites[J].Geological Society of America Abstracts with Programs,1979,11:468.
[35] Turner S P,Foden J D,Morrison R S.Derivation of Some A-type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge,South Australia[J].Lithos,1992,28(2):151-179.
[36] Smith D R,Noblett J,Wobus R A,et al.Petrology and Geochemistry of Late-stage Intrusions of the A-type,Mid-proterozoic Pikes Peak Batholith (Central Colorado,USA):Implications for Petrogenetic Models[J].Precambrian Research,1999,98(3-4):271-305.
[37] Anderson I C,Frost C D,Frost B R.Petrogenesis of the Red Mountain Pluton,Laramie Anorthosite Complex,Wyoming:Implications for the Origin of A-type Granite[J].Precambrian Research,2003,124(2-4):243-267.
[38] Collins W J,Beams S D,White A J R,et al.Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80(2):189-200.
[39] Clemens J D,Holloway J R,White A J R.Origin of an A-type Granite:Experimental Constraints[J].American Mineralogist,1986,71:317-324.
[40] Altherr R,Holl A,Hegner E.High-potassium,Calcalka-line I-type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany)[J].Lithos,2000,50(1-3):51-73.
[41] Lassiter J C,Depaolo D J.Plumes/Lithosphere Interact-ion in the Generation of Continental and Oceanic Flood Basalts:Chemical and Isotope Constraint[M]//Mahoney J.Large Igneous Provinces:Continental,Oceallic,and Planetary F1ood Volcanism. American Geophysical Union,1997:335-355.
[42] Ratschbacher L,Hacker B R,Webb L E,et al.Exhum-ation of the Ultrahigh-pressure Continental Crust in East Central China:Cretaceous and Cenozoic Unroofing and the Tan-Lu fault[J].Journal of Geophysical Research,2000,105 (10):13303-13338.
[43] Wong J,Sun M,Xing G F,et al.Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-type Granite:Extension at 125~100Ma and Its Tectonic Significance for South China[J].Lithos,2009,112(3-4):289-305.
[44] Qiu J S,Hua R M.The Spatial and Temporal Distribution of Mesozoic Volcanic Rocks in East China[M]//Wang D,Ren Q.The Mesozoic Volcanic-Intrusive Complexes and Their Metallogenic Relations in East China.Beijing:Science Press,1996:6-14.
[45] Pearce J A,Harris N B W,Tindle A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25(4):956-983.
[46] Pearce J A.Source and Settings of Granitic Rocks[J].Episodes,1996,19:120-125.
[47] 许长海,周祖翼,马昌前.大别造山带140-85Ma热窿伸展作用——年代学约束[J].中国科学(地球科学),2001,31 (11):925-937. Xu C H,Zhou Z Y,Ma C Q.Hot Ember Extension of Dabie Orogen in 140~85Ma—Chronology Constraints[J].Scientia Sinica Terrae,2001,31(11):925-937.
[48] 马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据[J].中国科学(地球科学),2003,33(9):817-827. Ma C Q,Yang K G,Ming H L,et al.Transition Time of Mesozoic Crust from Compression to Extension,Dabie Mountain:The Evidence from Granite\[J\].Scientia Sinica Terrae,2003,33(9):817-827.
-
期刊类型引用(5)
1. 向浩予,刘松,康波,陈昌军,邓伟,邓修林,陈浩如. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义. 西北地质. 2025(01): 43-51 . 百度学术
2. 吕金梁. 西藏金达地区铅锌多金属矿成矿规律研究. 山西冶金. 2024(06): 77-79 . 百度学术
3. 解鸿儒,郎兴海,邓煜霖,何青,李宸,王兆帅,吴伟哲,王涌滔. 西藏中拉萨地块门巴二长花岗岩年代学、岩石地球化学特征及地质意义. 岩石矿物学杂志. 2024(06): 1553-1577 . 百度学术
4. 张叶鹏,孔辉,刘程慧,董静,黄朝宇,王红. 西藏巴嘎拉东铅锌矿区地球化学异常特征及找矿预测. 地质装备. 2023(03): 20-27 . 百度学术
5. 冷秋锋,李文昌,戴成龙,张向飞,吴松洋,曹华文. 中拉萨地块那茶淌地区晚侏罗世-早白垩世花岗岩成因及构造背景:地球化学、年代学及Hf同位素制约. 岩石学报. 2022(01): 209-229 . 百度学术
其他类型引用(1)