Preliminary Study on the Microscopic Morphology and Chemical Composition, and Its Source of PM2.5 in Guangzhou
-
摘要:
PM2.5是近年来影响我国城市大气环境的首要污染物,其成因机制复杂。本文采用扫描电镜和ICP-MS研究了广州市大气颗粒物PM2.5的显微形貌及其化学组成特征,并应用富集因子法进行源解析。结果表明,PM2.5的颗粒形态以无定形态为主;主要物质表现为含Fe、Mg、Al、K、Na的硅酸盐组合,具有道路扬尘、建筑施工排放等一次粒子特征;单个无定形颗粒物能谱表现出硫酸盐+硝酸盐的组合特征,为汽车尾气所排放的前体污染气体NOx和SO2进入大气环境中,在特定的物理化学条件下通过成核作用发生相态改变所形成的二次粒子。PM2.5中高度富集Cd、Se、Zn、Cu、Pb、As等重金属,异常富集的Br主要为当地普遍使用的阻燃剂十溴联苯醚和拆解电子垃圾所致,稀土元素的浓度在0.022~0.582 ng/m3之间,具有重稀土元素富集的特征。这些特征反映出广州市PM2.5颗粒物的组成既有一次粒子,也有二次粒子,物质来源具有多重性。
Abstract:PM2.5 is the primary pollutant which has influenced the urban atmospheric environment in recent years, and its genetic mechanism is complicated. The microscopic morphology and trace element concentration of PM2.5 in the Guangzhou urban area were determined by Scanning Electron Microscope and Inductively Coupled Plasma-Mass Spectrometry, respectively. The enrichment factor method was adopted to constrain the source of PM2.5. The results show that PM2.5 mainly occurs as amorphousness fine particles. A silicate combination containing Fe, Mg, Al, K and Na is the main chemical composition of PM2.5, characterized by the first fine particles from road dust and buildings. An energy spectrum diagram of single amorphous particle shows the combination characteristics of sulfate and nitrate. These particles may have been secondary fine particles formed from pollution gases of SO2 and NOx from automobile exhaust in the atmospheric environment, through the nucleation induced phase behavior change under specific physical and chemical conditions. Heavy metals were highly enriched in PM2.5, including Cd, Se, Zn, Cu, Pb, and As. Local widespread use of deca bromine biphenyl ether as a flame retardant and a large number of E-waste dismantling are the main factors for abnormal enrichment of Br in the fine particles. The concentration of rare earth elements ranges from 0.022 to 0.582 ng/m3, with the relative enrichment of heavy rare earth elements in PM2.5. These features indicate that the composition of PM2.5 in the Guangzhou urban area are not only made up of primary particles, but also made up of secondary particles, characterized by multiple sources.
-
841 氧同位素在岩石成因研究的新进展
李铁军
氧同位素分析被应用于地质学已有半个世纪的历程。新技术的融入和实验方法的创新,使氧同位素分析手段,从最初的常规BrF5法,到激光探针BrF5法,再到离子探针分析方法的不断发展,使其在岩石成因研究方面已成为一个强有力工具。常规BrF5法是对全岩和少数主要造岩矿物的粉末样品进行全熔,所需样品量较多,且全岩样品常受到后期作用的影响,因此该方法的采用已受到局限。激光探针BrF5法能够分析石榴石、锆石等难熔副矿物,分析精度可达±0.05‰~±0.1‰,但该方法不能进行原位分析。离子探针分析法能对矿物不同部位进行原位微区分析,适合分析具有核边结构或环带的矿物,在研究复杂岩石的成因机理等科学问题,可得出更深入的认识;但目前仅限于锆石、橄榄石等少数矿物。随着氧同位素向微区分析的发展,单颗粒矿物尺度上的氧同位素组成分布规律,将是氧同位素研究今后的发展方向。
850 我国海洋地质分析测试技术
陈道华,刁少波,张欣
新时期海洋地质调查工作坚持资源与环境并重,积极开展新能源和后备矿产资源基地的调查与评价,不断向精细化、专题化的方向发展。通过积极探索、科技创新、多学科交叉与渗透、多领域合作,在天然气水合物勘探开发、国际海底矿产资源勘探开发、保护海洋环境、推动地球科学发展等方面均取得了令人瞩目的成果,推动着我国的海洋地质测试分析技术的进步,已经建立了以大型分析仪器为主的多元素同时分析海洋沉积物、大洋结核、富钴结壳样品的快速高效分析方法体系;尤其是针对新能源天然气水合物样品,开展了异常识别测试技术和应用测试技术研究。本文结合海洋地质工作,从海洋沉积物快速高效分析体系、大洋结核和富钴结壳快速分析测试技术、天然气水合物样品异常识别测试技术和应用测试技术研究、环境污染物监测的创新性技术和方法研究、海洋地质标准物质研制、船载与原位化学探测技术等六个方面,对我国海洋地质分析测试技术的最新进展和应用进行了评述。本文提出在海洋调查和监测的应用中,船载及原位测试技术将愈趋重要,加强开发海洋化学传感器的性能和检测集成化技术是今后的一个重要发展方向。
860 水体化学需氧量检测方法
罗国兵
化学需氧量是综合评价水质污染程度的重要指标,分析该指标的方法经过近百年的发展,重铬酸盐法、快速消解分光光度法作为水体中化学需氧量(COD)检测的标准方法在行业中具有广泛应用的基础。但是随着流动注射、化学发光、臭氧氧化、电化学、光催化及光电催化氧化等新技术的应用,水体中COD检测方法得到不断改进与快速拓展,其中以样品消解方法改进最为突出,如以TiO2纳米材料为代表的光电催化氧化法在检测速度( < 5 min)、对有机污染物的氧化能力(可氧化水体中几乎所有的有机污染物)及绿色环保等方面有较好的体现;另一方面,新方法存在适用不同污染水平的水体、离子干扰及对有机物氧化程度等方面的局限性,值得引起环境、化工、材料、电子等学科的技术人员的关注与探讨。
875 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定
付宇,孙晓明*,熊德信
近年来,激光剥蚀原位分析技术在同位素地球化学及微量元素地球化学领域得到了飞速发展。在锆石等副矿物原位定年方法被广泛应用的同时,各类矿物的微量元素原位分析技术也越来越引起研究人员的关注。白钨矿是各类矿床中较为常见的矿物,其稀土元素分布可作为判断矿床成因的重要依据。运用块样溶液电感耦合等离子体质谱法(ICP-MS)测定白钨矿微量元素耗时费力,并需事先判断元素分布是否均匀,而激光剥蚀-电感耦合等离子体质谱法(LA-ICP-MS)可克服以上困难。但由于缺乏基体完全匹配的外标物质,目前国内外白钨矿的LA-ICP-MS原位分析均采用玻璃标准参考物质NIST 610作为外标物质,获得精准的实验结果是亟需解决的问题。本文以云南大坪金矿含金石英脉中的白钨矿为例,对比分析了同一白钨矿样品的LA-ICP-MS和溶液进样ICP-MS的实验结果,证实了以NIST 610作为外标物质,Ca作为内标元素,在较高空间分辨率条件下( < 40 μm)可以对白钨矿稀土元素进行精准、快速的LA-ICP-MS原位分析,研究成果对白钨矿的稀土元素原位分析有着重要的意义。
897 X射线荧光光谱微区分析在铅锌矿石鉴定上的应用
梁述廷,刘玉纯,刘瑱,林庆文
自然界铅锌矿石存在类质同象现象(如方铅矿和硒铅矿、闪锌矿和含铁闪锌矿等),它们在光学显微镜下特征相似,难以鉴别区分。利用波长色散X射线荧光光谱仪(X光管激发)的限束光学系统(0.5 mm的限制光栏),在内置CCD样品表面观测结构直接观察下,极坐标样品平台(r-θ)可以快速地将样品测区移至X射线光照强度最大光斑处;通过定性扫描方式确定铅锌矿石中的异常元素;通过微区原位分布分析获取测区主次量元素的含量或强度,绘制测区主次量元素二维或三维分布图,直观显示元素或矿物在测区的分布情况;通过主次量元素的含量计算其物质的量之比,结合其化学成分的理论值给矿物准确定名。此方法制样简单(矿石制成光片,无需喷碳处理)、分析速度快、稳定性好、准确度高、无污染,为光学特征相似矿物的鉴别提供了有用的信息。本研究充分挖掘这类仪器的潜能,拓宽了X射线荧光光谱分析的应用领域,为岩矿鉴定工作提供一种新的技术手段。
-
表 1 广州市PM2.5 4件样品中44个微量元素浓度(ng/m3)
Table 1 The trace elements concentrations of four samples PM2.5 in Guangzhou
元素 含量最小值 含量最大值 含量平均值 富集因子(EF) 元素 含量最小值 含量最大值 含量平均值 富集因子(EF) Ti 13.2 16.4 15.2 1 Ba 4.57 4.97 4.72 - V 1.97 4.81 3.1 7.24 W 0.499 0.591 0.541 - Cr 2.93 5.02 4.43 15.5 Hg 0.011 0.034 0.025 126 Mn 10.3 16.2 12.5 11.8 Tl 0.238 0.357 0.285 - Co 0.153 0.351 0.233 5.52 Pb 74.9 93.7 83.3 424 Ni 1.70 3.47 2.38 31.5 Bi 4.38 6.40 4.99 - Cu 23.9 59.2 33.5 533 Y 1.97 3.52 2.85 - Zn 196 241 211 660 Zr 1.65 4.17 2.64 - Ga 1.00 1.21 1.10 - La 0.280 0.342 0.314 - Ge 0.133 0.418 0.235 - Ce 0.519 0.740 0.582 - As 17.6 35.6 25.4 470 Pr 0.042 0.077 0.051 - Se 2.47 3.64 2.97 914 Nd 0.155 0.546 0.278 - Br 120 347 202 - Sm 0.034 0.323 0.130 - Rb 2.25 2.74 2.43 - Eu 0.007 0.104 0.041 - Sr 0.763 0.971 0.859 - Gd 0.059 0.747 0.297 - Mo 1.23 2.30 1.63 - Tb 0.012 0.167 0.065 - Cd 2.69 3.95 3.20 9250 Dy 0.067 1.180 0.466 - In 0.097 0.129 0.110 - Ho 0.014 0.225 0.089 - Sn 1.30 2.78 2.07 - Er 0.038 0.664 0.271 - Sb 18.5 24.5 20.5 - Tm 0.003 0.085 0.034 - Te 0.226 0.681 0.381 - Yb 0.033 0.508 0.198 - Cs 0.364 0.508 0.413 - Lu 0.004 0.057 0.022 - 注:富集因子计算中,土壤背景值单位除Ti为%,其余为mg/kg;土壤背景值中Ti取自文献[21],其余元素取自文献[22]。富集因子栏中“-”表示无对应元素土壤背景值。 -
[1] 杨洪斌,邹旭东,汪宏宇,等.大气环境中PM2.5的研究进展与展望[J].气象与环境学报,2012,28(3):77-82. Yang H B,Zou X D,Wang H Y,et al.Study Progress on PM2.5 in Atmospheric Environment[J].Journal of Meteorology and Environment,2012,28(3):77-82.
[2] Mitkus R J,Powell J L,Zeisler R,et al.Comparative Physicochemical and Biological Characterization of NIST Interim Reference Material PM2.5 and SRM1648 in Human A549 and Mouse RAW264.7 Cells[J].Toxicology in Vitro,2013,27:2289-2298.
[3] Zhou S Z,Yuan Q,Li W J,et al.Trace Metals in Atmospheric Fine Particles in One Industrial Urban City:Spatial Variations,Sources,and Health Implications[J].Journal of Environmental Sciences,2014,26:205-213.
[4] 郭新彪,魏红英.大气PM2.5对健康影响的研究进展[J].科学通报,2013,58(13):1171-1177. Guo X B,Wei H Y.Progress on The Health Effects of Ambient PM2.5 Pollution[J].Chinese Science Bulletin,2013,58(13):1171-1177.
[5] Andrade M,Miranda R M,Fornaro A,et al.Vehicle Emissions and PM2.5 Mass Concentrations in Six Brazilian Cities[J].Air Quality,Atmosphere and Health,2012,5:79-88.
[6] Voutsa D,Samara C,Manoli E,et al.Ionic Composition of PM2.5 at Urban Sites of Northern Greece:Secondary Inorganic Aerosol Formation[J].Environmental Science and Pollution Research,2014,21:4995-5006.
[7] Cao J J,Zhen X S,Chow J C,et al.Winter and Summer PM2.5 Chemical Compositionsin Fourteen Chinese Cities[J].Journal of the Air & Waste Management Association,2012,62(10):1214-1226.
[8] Wang X H,Bi X H,Sheng G Y,et al.Chemical Composition and Sources of PM10 and PM2.5 Aerosols in Guangzhou,China[J].Environmental Monitoring and Assessment ,2006,119:425-439.
[9] 张延君,郑玫,蔡靖,等.PM2.5源解析方法的比较与评述[J].科学通报,2015,60(2):109-121. Zhang Y J,Zheng M,Cai J,et al.Comparison and Overview of PM2.5 Source Apportionment Methods[J].Chinese Science Bulletin,2015,60(2):109-121.
[10] 冯茜丹,党志,黄伟林.广州市秋季PM2.5中重金属的污染水平与化学形态分析[J].环境科学,2008,29(3):569-575. Feng X D,Dang Z,Huang W L.Pollution Level and Chemical Speciation of Heavy Metals in PM2.5 during Autumn in Guangzhou City[J].Environmental Science,2008,29(3):569-575.
[11] Al-Momani I F.Trace Elements in Atmospheric Precipitation at Northern Jordan Measured by ICP-MS:Acidity and Possible Sources[J].Atmospheric Environment,2003,37(32):4507-4515.
[12] Mouli P C,Mohan S V,Balaram V,et al.A Study on Trace Elemental Composition of Atmospheric Aerosols at a Semi-arid Urban Site Using ICP-MS Technique[J].Atmospheric Environment,2006,40(1):136-146.
[13] 帅琴,杨薇,胡圣虹,等.微波消解-电感耦合等离子体质谱测定大气颗粒物中痕量稀土元素[J].分析科学学报,2005,21(4):375-377. Shuai Q,Yang W,Hu S H,et al.Determination of Trace Rare Earth Elements in Air Particulate Matter by ICP-MS with Microwave Digestion[J].Journal of Analytical Science,2005,21(4):375-377.
[14] 李泽熙,邵龙义,樊景森,等.北京市不同天气条件下单颗粒形貌及元素组成特征[J].中国环境科学,2013,33(9):1546-1552. Li Z X,Shao L Y,Fan J S,et al.Morphologies and Elemental Compositions of Individual Particles under Different Weather Conditions in Beijing[J].China Environmental Science,2013,33(9):1546-1552.
[15] 冯茜丹,明彩兵,刘晖,等.2011年秋季广州城区大气PM2.5微观形貌和粒度分布[J].中国环境科学,2015,35(4):1013-1018. Feng X D,Ming C B,Liu H,et al.Microscopic Morphology and Size Distribution of PM2.5 in Guangzhou Urban Area in Fall,2011[J].China Environmental Science,2015,35(4):1013-1018.
[16] 董树屏,刘涛,孙大勇,等.用扫描电镜技术识别广州市大气颗粒物主要种类[J].岩矿测试,2001,29(3):202-207. Dong S P,Liu T,Sun D Y,et al.Identification of Major Particle Classes in Guangzhou Aerosol by Scanning Electron Microscopy[J].Rock and Mineral Analysis,2001,29(3):202-207.
[17] 朱倩茹,刘永红,徐伟嘉,等.广州PM2.5污染特征及影响因素分析[J].中国环境监测,2013,29(2):15-21. Zhu Q R,Liu Y H,Xu W J,et al.Analysis on the Pollution Characteristics and Influence Factors of PM2.5 in Guangzhou[J].Environmental Monitoring in China,2013,29(2):15-21.
[18] 崔明明,王雪松,苏杭,等.广州地区大气可吸入颗粒物的化学特征及来源解析[J].北京大学学报(自然科学版),2008,44(3):459-466. Cui M M,Wang X S,Su H,et al.Chemical Characters and Sources Identification of PM10 in Guangzhou Area[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2008,44(3):459-466.
[19] Behera S N,Sharma M.Reconstructing Primary and Secondary Components of PM2.5 Composition for an Urban Atmosphere[J].Aerosol Science and Technology,2010,44:983-992.
[20] 张小曳,孙俊英,王亚强,等.我国雾-霾成因及其治理的思考[J].科学通报,2013,58(13):1178-1187. Zhang X Y,Sun J Y,Wang Y Q,et al.Factors Contributing to Haze and Fog in China[J].Chinese Science Bulletin,2013,58(13):1178-1187.
[21] 中国环境监测总站编著.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:330-492. China National Environmental Monitoring Centre.Elements Background Values of Soils in Chian[M].Beijing:China Environmental Science Press,1990:330-492.
[22] 张山岭,杨国义,罗薇,等.广东省土壤无机元素背景值的变化趋势研究[J].土壤,2012,44(6):1009-1014. Zhang S L,Yang G Y,Luo W,et al.Changes of Background Values of Inorganic Elements in Soils of Guangdong Province[J].Soils,2012,44(6):1009-1014.
[23] Song X H,Polissar A V,Hopke P K.Sources of Fine Particle Composition in the Northeastern US[J].Atomspheric Environment,2001,35: 5227-5286.
[24] Lim M C H,Ayoko G A,Morawska L.Characterization of Elemental and Polycyclic Aromatic Hydrocarbon Compositions of Urban Air in Brisbane[J].Atomspheric Environment,2005,39:463-476.
[25] Hu X,Zhang Y,Ding Z H,et al.Bioaccessibility and Health Risk of Arsenic and Heavy Metals (Cd,Co,Cr,Cu,Ni,Pb,Zn and Mn) in TSP and PM2.5 in Nanjing,China[J].Atmospheric Environment,2012,57:146-152.
[26] Chen J M,Tan M G,Li Y L,et al. A lead Isotope Record of Shanghai Atmospheric Lead Emissions in TotalSuspended Particles during the Period of Phasing out of Leaded Gasoline[J].Atmospheric Environment,2005,39:1245-1253.
[27] Chow J C,Watson J G,Kuhns H,et al.Source Profiles for Industrial,Mobile,and Area Sources in the Big Bend Regional Aerosol Visibility and Observational Study[J].Chemosphere,2004,54(2):185-208.
[28] 陈来国,麦碧娴,许振成,等.多溴联苯醚在不同粒径大气颗粒物上的分布及总有机碳的影响[J].环境化学,2010,29(3):363-368. Chen L G,Mai B X,Xu Z C,et al.Particle Size Distribution of Polybrom Inated Diphenyl Ethers and the Influence of Total Organic Carbon[J].Environmental Chemistry,2010,29(3):363-368.
[29] 陈来国,麦碧娴,许振成,等.广州市夏季大气中多氯联苯和多溴联苯醚的含量及组成对比[J].环境科学学报,2008,28(1):150-159. Chen L G,Mai B X,Xu Z C,et al.Comparison of PCBs and PBDEs Concentrations and Compositions in the Guangzhou Atmosphere in Summer[J].Acta Scientiae Circumstantiae,2008,28(1):150-159.
[30] 陈多宏,李丽萍,毕新慧,等.典型电子垃圾拆解区大气中多溴联苯醚的污染[J].环境科学,2008,29(8)2105-2110. Chen D H,Li L P,Bi X H,et al.PBDEs Pollution in the Atmosphere of a Typical E-waste Dismantling Region[J].Environment Science,2008,29(8):2105-2110
[31] 杨雪,刘大锰,孙俊玲.北京市大气PM2.5中多溴联苯醚污染水平与来源分析[J].现代地质,2010,24(2):355-361. Yang X,Liu D M,Sun J L.Pollution Level and Source Analysis of Polybrom Inated Diphenyl Ethers (PBDEs) from Atmospheric Matter PM2.5 in Beijing[J].Geoscience,2010,24(2):355-361.